
Just-in-Time Provisioning for Cyber Foraging

Kiryong Ha
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213, USA

krha@cmu.edu

Padmanabhan Pillai
Intel Labs

4720 Forbes Ave, Suite 410
Pittsburgh, PA 15213, USA

padmanabhan.s.pillai@intel.com
Wolfgang Richter

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15213, USA
wolf@cs.cmu.edu

Yoshihisa Abe
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213, USA
yoshiabe@cs.cmu.edu

Mahadev
Satyanarayanan

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15213, USA
satya@cs.cmu.edu

ABSTRACT
Cloud offload is an important technique in mobile computing. VM-
based cloudlets have been proposed as offload sites for the resource-
intensive and latency-sensitive computations typically associated
with mobile multimedia applications. Since cloud offload relies on
precisely-configured back-end software, it is difficult to support at
global scale across cloudlets in multiple domains. To address this
problem, we describe just-in-time (JIT) provisioning of cloudlets
under the control of an associated mobile device. Using a suite of
five representative mobile applications, we demonstrate a prototype
system that is capable of provisioning a cloudlet with a non-trivial
VM image in 10 seconds. This speed is achieved through dynamic
VM synthesis and a series of optimizations to aggressively reduce
transfer costs and startup latency.

Categories and Subject Descriptors
D.4.7 [Software]: Operating System – Organization and Design

General Terms
Experimentation, Measurement, Performance
Keywords
mobile computing, cloud computing, cloudlet, cloud offload, vir-
tual machine, Amazon EC2, VM synthesis, Wi-Fi, wireless

1. INTRODUCTION
Cloud offload from mobile devices has been the subject of many

recent papers [5, 7, 21, 35]. These efforts are rooted in work
stretching back over a decade on the theme of cyber foraging [41],
whose goal is to overcome the resource limitations of wireless mo-
bile devices. Flinn [8] traces the evolution of this technique and
gives a comprehensive review of work in this area. For reasons dis-
cussed in Section 2.1, it will remain an important technique for the
future despite mobile hardware improvements. VM-based cloudlets
that are dispersed at the edges of the Internet and located just one

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’13, June 25–28, 2013, Taipei, Taiwan
Copyright 2013 ACM 978-1-4503-1672-9/13/06 ...$15.00.

WiFi hop away from associated mobile devices have been proposed
as cyber foraging sites for cloud offload [42].

Mobile computing today spans many device operating systems
and application environments (e.g., Android, iOS, Windows 8), as
well as diverse approaches to partitioning and offloading computa-
tion. The latter range from language-specific approaches such as
MAUI to legacy implementations that depend on specific back-end
operating systems and runtime support [1]. There is churn in this
space from new OS versions, patches to existing OS versions, new
libraries, new versions of cyber foraging tools, new language run-
time systems, and so on. VMs cleanly encapsulate this messy com-
plexity, but create the problem of precisely provisioning a cloudlet
from a large and continuously evolving space of VM images.

The large size of VM images complicates dynamic provision-
ing of cloudlets. At the same time, the presumption of ubiquity in
mobile computing deprecates a static provisioning strategy. A mo-
bile user expects good service for all his applications at any place
and time. Wide-area physical mobility (e.g., an international trav-
eler stepping off his flight) makes it difficult to always guarantee
that a nearby cloudlet will have the precise VM image needed for
cyber foraging (e.g., natural language translation with customized
vocabulary and speaker-trained voice recognition via the traveler’s
smartphone). The VM guest state space is simply too large and
too volatile for static provisioning of cloudlets at global scale. A
different provisioning challenge involves the deployment of new
cloudlets for load balancing, hardware upgrades, or recovery from
disasters. Dynamic self-provisioning of cloudlets will greatly sim-
plify such deployments.

Rapid just-in-time provisioning of cloudlets is the focus of this
paper. We show how a cloudlet can be provisioned in as little as
10 seconds with a complete copy of a new VM image that is the
back-end of an offloaded application such as face recognition, ob-
ject recognition, or augmented reality. The compressed sizes of
these VM images can range from 400 MB for a stripped-down
Linux guest, to well over 2 GB for typical Windows based images.
The key to rapid provisioning is the recognition that a large part
of a VM image is devoted to the guest OS, software libraries, and
supporting software packages. The customizations of a base sys-
tem needed for a particular application are usually relatively small.
Therefore, if the base VM already exists on the cloudlet, only its
difference relative to the desired custom VM, called a VM over-
lay, needs to be transferred. This concept of a VM overlay bears
resemblance to copy-on-write virtual disk files [25] or VM image
hierarchies [3], but extends to both disk and memory snapshots.

Typical Server Typical Handheld
Year Processor Speed Device Speed

1997 Pentium R© II 266 MHz Palm Pilot 16 MHz

2002 Itanium R© 1 GHz Blackberry 133 MHz
5810

2007 Intel R© 9.6 GHz Apple 412 MHz
CoreTM 2 (2.4 Ghz x 4 cores) iPhone

2011 Intel R© 32 GHz Samsung 2.4 GHz
Xeon R© X5 (2.7 GHz x Galaxy S2 (1.2 GHz x

6 cores x 2 sockets) 2 cores)

Table 1: Hardware Performance (adapted from Flinn [8])

Our approach of using VM overlays to provision cloudlets is called
dynamic VM synthesis. Proof-of-concept experiments [42] showed
provisioning times of 1–2 minutes using this approach. In this pa-
per, we present a series of optimizations that reduces this time by
an order of magnitude.

Although motivated by mobile computing, dynamic VM synthe-
sis has broader relevance. Today, public clouds such as Amazon’s
EC2 service are well-optimized for launching images that already
exist in their storage tier, but do not provide fast options for provi-
sioning that tier with a new, custom image. One must either launch
an existing image and laboriously modify it, or suffer the long, te-
dious upload of the custom image. For really large images, Ama-
zon recommends mailing a hard drive! We show that dynamic VM
synthesis can rapidly provision public clouds such as EC2.

2. BACKGROUND

2.1 Need for Cyber Foraging
The initial observation that mobile devices are resource-poor rel-

ative to server hardware of comparable vintage dates back to the
mid-1990s [40]. Table 1, adapted from Flinn [8], illustrates the
consistent large gap in the processing power of typical server and
mobile device hardware between 1997 and 2011. This stubborn gap
reflects a fundamental reality of user preferences: Moore’s Law has
to be leveraged differently on hardware that people carry or wear
for extended periods of time. This is not just a temporary lim-
itation of current mobile hardware technology, but is intrinsic to
mobility. The most sought-after features of a mobile device always
include light weight, small size, long battery life, comfortable er-
gonomics, and tolerable heat dissipation. Processor speed, memory
size, and disk capacity are secondary. For as long as our appetite for
resource-intensive applications exceeds what mobile devices can
sustain, cyber foraging will continue to be relevant.

Today, tasks such as free-form speech recognition, natural lan-
guage translation, face recognition, object recognition, dynamic ac-
tion interpretation from video, and body language interpretation lie
beyond the limits of standalone mobile computing technology. Ta-
ble 2, from Ha et al. [16], shows the median and 99th percentile
response times for speech recognition and face recognition on typ-
ical mobile hardware in 2012, with and without offloading. The re-
sults show that cloud offload improves both the absolute response
times and their variance. Looking further into the future, one can
imagine cognitive assistance applications built from these primi-
tives (such as an advanced version of IBM’s Watson [51]) seam-
lessly augmenting human perception and cognition, and assisting
attention-challenged mobile users in their real-world and cyber-
world interactions. Cyber foraging will be essential to realizing
such a futuristic world.

No Offload Offload
Application median 99% median 99%
SPEECH 1.22 s 6.69 s 0.23 s 1.25 s

FACE 0.42 s 4.12 s 0.16 s 1.47 s

Table 2: Speech and Face Recognition Today (Source: [16])

2.2 VM-based Cloudlets
Which specific part of the infrastructure should one leverage for

cyber foraging? The obvious answer today is “the cloud.” Public
cloud infrastructure such as Amazon EC2 data centers are natu-
ral offload sites for resource-intensive computations triggered by
mobile devices. Unfortunately, these large consolidated data cen-
ters are suboptimal offload sites for a growing number of resource-
intensive yet latency-sensitive mobile applications. In the course
of its travels, a roaming mobile device often sees multiple network
hops to such a data center [49]. The resulting end-to-end latency
can be large enough to seriously affect many emerging mobile ap-
plications [16]. In hostile environments such as military operations
and disaster recovery, physical distance also increases vulnerability
to network disruptions [44].

A cloudlet is a new architectural element for cyber foraging that
represents the middle tier of a 3-tier hierarchy: mobile device –
cloudlet – cloud. To serve as shared infrastructure, a cloudlet must
provide safety and strong isolation between untrusted computations
from different mobile devices. To sustain viable business models,
it has to incorporate authentication, access control, and metering
mechanisms, and has to meet service level expectations/guarantees
through dynamic resource management. To be cost-effective, cloud-
let deployments need to support the widest possible range of user-
level computations, with minimal restrictions on their process struc-
ture, programming languages or operating systems.

In public and private clouds, these requirements are met using
the VM abstraction. For precisely the same reasons, VMs are also
valuable as the organizing principle of cloudlets. An important
difference is that cloudlets only contain soft state that is cached
or otherwise re-creatable, while clouds contain both hard and soft
state. In the context of this paper, the most important components
of “state” are VM images. A cloudlet can thus be viewed as a “data
center in a box” that “brings the cloud closer.” Today, “micro data
centers” from companies such as Myoonet [28] and AOL [26] are
already available and can be repurposed as cloudlets.

3. DYNAMIC VM SYNTHESIS

3.1 Basic Approach
The intuition behind dynamic VM synthesis is that although each

VM customization is unique, it is typically derived from a small
set of common base systems such as a freshly-installed Windows 7
guest or Linux guest. We refer to the VM image used for offloading
as a launch VM. It is created by installing relevant software into a
base VM. The compressed binary difference between the base VM
image and the launch VM image is called a VM overlay. This idea
of a binary difference between VM images to reduce storage and
network transfer costs has been successfully used before [3, 25,
57]. We, therefore, extensively use this overlay concept for both
VM disk and memory snapshots in this work.

At run-time, dynamic VM synthesis (sometimes shortened to “VM
synthesis” or just “synthesis”) reverses the process of overlay cre-
ation. Figure 1 shows the relevant steps. A mobile device delivers
the VM overlay to a cloudlet that already possesses the base VM
from which this overlay was derived. The cloudlet decompresses
the overlay, applies it to the base to derive the launch VM, and then

Figure 1: Dynamic VM Synthesis from Mobile Device

creates a VM instance from it. The mobile device can now begin
performing offload operations on this instance. The instance is de-
stroyed at the end of the session, but the launch VM image can be
retained in a persistent cache for future sessions. As a slight variant
of this process, a mobile device can ask the cloudlet to obtain the
overlay from the cloud. This indirection reduces the energy used
for wireless data transmission, but can improve transfer time only
when WAN bandwidth to the cloud exceeds local WiFi bandwidth.

Note that the cloudlet and mobile device can have different hard-
ware architectures: the mobile device is merely serving as transport
for the VM overlay. Normally, each offload session starts with a
pristine instance of the launch VM. However, there are some use
cases where modified state in the launch VM needs to be preserved
for future offloads. For example, the launch VM may incorporate
a machine learning model that adapts to a specific user over time.
Each offload session then generates training data for an improved
model that needs to be incorporated into the VM overlay for future
offload sessions. This is achieved in Figure 1 by generating a VM
residue that can be sent back to the mobile device and incorporated
into its overlay.

There are no constraints on the guest OS of the base VM; our
prototype works with both Linux and Windows. We anticipate that
a relatively small number of base VMs will be popular on cloudlets
at any given time. To increase the chances of successful synthe-
sis, a mobile device can carry overlays for multiple base VMs and
discover the best one to use through negotiation with the cloudlet.
Keep in mind that the VMs here are virtual appliances that are
specifically configured for serving as the back-ends of mobile ap-
plications. Although these virtual appliances are generated on top
of conventional operating systems such as Linux or Windows, they
are focused and dedicated to serve a particular mobile application,
rather than general-purpose desktop environments that need a wider
range of functionality.

It is useful to contrast dynamic VM synthesis with demand pag-
ing the launch VM from the mobile device or cloud using a mecha-
nism such as the Internet Suspend/Resume system R© [43]. Synthe-
sis requires the base VM to be available on the cloudlet. In contrast,
demand paging works even for a freshly-created VM image that
has no ancestral state on the cloudlet. Synthesis can use efficient
streaming to transmit the overlay, while demand paging incurs the
overhead of many small data transfers. However, some of the state
that is proactively transferred in an overlay may be wasted if the
launch VM includes substantial state that is not accessed. Synthe-
sis incurs a longer startup delay before VM launch. However, once
launched, the VM incurs no stalls. This may be valuable for soft
real-time mobile applications such as augmented reality.

OBJECT: identifies known objects and their positions in an image. Orig-
inally intended for a robotics application [48], it computes SIFT fea-
tures [24] to match objects from a database, and computes position
based on geometry of matched features. The back-end of this applica-
tion runs in a Linux environment.

FACE: detects and attempts to identify faces in an image from a pre-
populated database. The algorithm uses Haar Cascades of classifiers for
detection and the Eigenfaces method [52] for identification. The appli-
cation backend is based on OpenCV [32] computer vision routines, and
runs on Microsoft Windows 7.

SPEECH: performs speech-to-text conversion of spoken English sen-
tences using a Hidden Markov Model (HMM) recognition system [47].
The Java-based application backend runs on Linux.

AR: [50] is an augmented reality application that identifies buildings and
landmarks in a scene captured by a phone’s camera, and labels them
precisely in the live view. An 80 GB database constructed from over
1000 images of 200 buildings is used to perform identification. The
application backend uses multiple threads, OpenCV [32] libraries, and
runs on Microsoft Windows 7.

FLUID: is an interactive fluid dynamics simulation, that renders a liquid
sloshing in a container on the screen of a phone based on accelerometer
inputs. The application backend runs on Linux and performs a smoothed
particle hydrodynamics [46] physics simulation using 2218 particles, gen-
erating up to 50 frames per second. The structure of this application is
representative of real-time (i.e., not turn-based) games.

Figure 2: Example Mobile Multimedia Applications

It is also useful to contrast VM synthesis with launching the base
VM and then performing package installations and configuration
modifications to transform it into the launch VM. This is, of course,
exactly what happens offline when creating the overlay; the differ-
ence is that the steps are now being performed at runtime on each
association with a cloudlet. On the one hand, this approach can be
attractive because the total size of install packages is often smaller
than the corresponding VM overlay (e.g., Table 3) and, therefore,
involves less transmission overhead. On the other hand, the time
delay of installing the packages and performing configuration is in-
curred at run time. Unlike optimization of VM synthesis, which is
fully under our control even if the guest is closed-source, speeding
up the package installation and configuration process requires indi-
vidual optimizations to many external software components. Some
of those may be closed-source, proprietary components. Of even
greater significance is the concern that installing a sequence of
packages and then performing post-installation configuration is a
fragile and error-prone task even when scripted. Defensive engi-
neering suggests that these fragile steps be performed only once,
during offline overlay creation. Once a launch VM image is cor-
rectly created offline, the synthesis process ensures that precisely
the same image is re-created on each cloudlet use. This bit-exact
precision of cloudlet provisioning is valuable to a mobile user, giv-
ing him high confidence that his applications will work as expected
no matter where he is in the world. Finally, the installation ap-
proach requires the application to be started fresh every time. Ex-
ecution state is lost between subsequent uses, destroying any sense
of seamless continuity of the user experience.

3.2 Baseline Performance
We have built an instantiation of the basic VM synthesis ap-

proach, using the KVM virtual machine monitor. In our prototype,
the overlay is created using the xdelta3 binary differencing tool.
Our experience has been that xdelta3 generates smaller overlays
than the native VM differencing mechanism provided by KVM.
The VM overlay is then compressed using the Lempel-Ziv-Markov
algorithm (LZMA), which is optimized for high compression ra-

App Install Overlay Size (MB) Synthesis
name size (MB) disk memory time (s)

OBJECT 39.5 92.8 113.3 62.8
FACE 8.3 21.8 99.2 37.0

SPEECH 64.8 106.2 111.5 63.0
AR 97.5 192.3 287.9 140.2

FLUID 0.5 1.8 14.1 7.3

Table 3: Baseline performance (8 GB disk, 1 GB memory)

tios and fast decompression at the price of relatively slow compres-
sion [54]. This is an appropriate trade-off because decompression
takes place in the critical path of execution at run-time and con-
tributes to user-perceived delay. Further, compression is only done
once offline but decompression occurs on each VM synthesis.

We test the efficacy of VM synthesis in reducing data transfer
costs and application launch times on the VM back-ends of five
mobile applications, summarized in Figure 2. In each case, user
interaction occurs on a mobile device while the compute-intensive
back-end processing of each interaction occurs in a VM instance on
a cloudlet. These applications, written by various researchers and
described in recent literature, are the building blocks of futuristic
applications that seamlessly augment human perception and cogni-
tion. Three of the five back-ends run on Linux, while the other two
run on Windows 7. These compute-intensive yet latency-sensitive
applications are used in all the experiments reported in this paper.

We first construct base VM images using standard builds of Linux
(Ubuntu 12.04 server) and Windows 7. These VMs are configured
with 8 GB of disk and 1 GB of memory. An instance of each im-
age is booted and then paused; the resulting VM disk image and
memory snapshot serve as base disk and base memory respectively.
To construct a launch VM, we resume an instance of the appropri-
ate base image, install and configure the application binaries, and
launch the application. At that point, we pause the VM. The re-
sulting disk image and memory snapshot constitute the launch VM
image. As soon as an instance is resumed from this image, the ap-
plication will be in a state ready to respond to offload requests from
the mobile device — there will be no reboot delay.

The overlay for each application is the compressed binary differ-
ence between the launch VM image and its base VM image, pro-
duced using xdelta3 and LZMA compression. The sizes of the
overlays, divided into disk and memory components, are reported
in Table 3. For comparison, the sizes of the compressed applica-
tion installation packages are also reported. Relative to VM image
sizes, the VM synthesis approach greatly reduces the amount of
data that must be transferred to create VM instances. Compared
to the launch VM images (nominal 8 GB disk image plus memory
snapshot), Table 3 shows that overlays are an order of magnitude
smaller. While they are larger than the install packages from which
they were derived, VM synthesis eliminates the fragile and error-
prone process of runtime package installation and configuration as
discussed in Section 3.1. In fact, as we show later in Section 8.1,
provisioning using the most optimized version of VM synthesis is
faster than runtime installation and configuration.

The total time to perform VM synthesis is also reported in Ta-
ble 3. These times were measured using a netbook (client) and a
virtual machine (server) hosted in a cloudlet described in Table 4.
The client serves the application overlays to the cloudlet, which
performs synthesis and executes the application VMs. For each ap-
plication, the total time reported includes the time needed to trans-
fer the overlay across WiFi, decompress it, apply the overlay to
the base image, and resume the constructed application image. We
note that the netbook used here is not significantly more capable

Mobile Cloudlet

Model DellTM Latitude 2120 DellTM Optiplex 9010
Netbook Desktop

CPU
Intel R© AtomTM N550 Intel R© Core R© i7-3770

1.5 GHz, 2 cores 3.4 GHz, 4 cores, 8 threads
(4 VCPUs for VM)

RAM 2 GB 32 GB (1 GB VM RAM)
Disk 250 GB HDD 1 TB HDD (8 GB VM disk)

Network 802.11a/g/n WiFi∗ 1 Gbps Ethernet

OS Ubuntu 12.04 64bit Ubuntu 12.04 64bit
(Linux kernel 3.2.0) (Linux kernel 3.2.0)

VMM — QEMU/KVM-1.1.1†

misc Belkin N750 Router (802.11n, GigE)

∗2.4 GHz 802.11n used here; 38 Mbps measured average BW
†modified for some experiments, as described in Sect. 7.2

Table 4: System configuration for experiments

than smartphones today, and achieves the same network bandwidth
(38 Mbps) on 802.11n as the Samsung Galaxy 2 in our tests. Since
most computation is done offline or on the cloudlet, and the data
transfer is network limited, we do not expect significantly different
results using a smartphone. However, for our prototype implemen-
tation, the netbook was convenient as it allowed us to use a full
complement of x86 tools and libraries for the front-ends of our five
applications. We use this configuration for all of the experiments
in this paper.

Although this baseline implementation of VM synthesis achieves
bit-exact provisioning without transferring full VM images, its per-
formance falls short for ad-hoc, on-demand use in mobile offload
scenarios. Table 3 shows that only one of the applications, FLUID,
completes synthesis within 10 seconds. A synthesis time of 60 to
150 seconds is more typical for the other applications. That is too
large for good user experience.

In the rest of this paper, we present a multi-pronged approach to
accelerating VM synthesis. We first reduce the size of the overlay
using aggressive deduplication (Section 4) and by bridging the se-
mantic gap between the VMM and guest OS (Section 5). We then
accelerate the launch of the VM image by pipelining its synthe-
sis (Section 6), and by optimistically launching before synthesis is
complete (Section 7). The results presented in each of these sec-
tions shows the speedup attributable to that optimization.

4. DEDUPLICATION

4.1 Concept
Our first optimization leverages the fact that there are many

sources of data redundancy in a VM overlay. Through deduplica-
tion we can eliminate this redundancy and thus shrink the overlay.
A smaller overlay incurs less transmission delay and also consumes
less energy on the mobile device for transmission. Deduplication is
very effective at reducing redundant data, and has been used widely
in a variety of fields. In the virtualization space, it has been ap-
plied to reduce memory footprints of concurrent VMs [53], and
in accelerating VM migration [57]. It is particularly well suited
to VM overlays, since the significant expense of deduplication is
only incurred offline during overlay construction. The overhead
of re-inflating deduplicated data during synthesis is trivial, espe-
cially because the cloudlet is a powerful machine that is not energy-
constrained. From a number of sources, we can anticipate some
duplication of data between the memory snapshot and the disk im-
age of the launch VM. For example, at the moment the launch VM
is suspended during overlay construction, the I/O buffer cache of
the guest OS contains some data that is also present in its virtual
disk. Additionally, data from some files on the virtual disk may

Figure 3: FUSE Interpositioning for Deduplication

have been read by the application back-end into its virtual memory
during initialization. Further, depending on the runtime specifics
of the programming language in which the application is written,
there may be copies of variable initialization data both in memory
and on disk. These are only a few of the many sources of data du-
plication between the memory snapshot and the disk image of the
launch VM.

Separately, we can also expect some duplication of data between
the overlay and the base VM (which is already on the cloudlet).
Recall that the baseline implementation in Section 3.1 creates a
VM overlay by constructing a binary delta between a launch VM
and the base VM from which it is derived. This binary delta may
contain duplicate data that has been copied or relocated within the
memory or disk image. Indeed, the baseline system cannot take ad-
vantage of the fact that many parts of memory should be identical
to disk because they are loaded from disk originally, e.g., executa-
bles, shared libraries, etc. An efficient approach to capturing this
begins with a list of modifications within the launch VM and then
performs deduplication to further reduce this list to the minimal set
of information needed to transform a base VM into the launch VM.
If we could find this minimal set, then we could construct smaller
VM overlays.

4.2 Implementation
The choice of the granularity at which comparisons are performed

is a key design decision for deduplication. Too large a granularity
will tend to miss many small regions that are identical. Very small
granularity will detect these small regions, but incur large overhead
in the data representation. Our choice is a chunk size of 4 KB
because it is a widely-used page size for many popular operating
systems today. For example, current versions of Linux, Mac OS X,
and Windows all use a 4 KB page size. An additional benefit of
deduplicating at this granularity is that most operating systems use
Direct Memory Access (DMA) for I/O, which means the disk is ac-
cessed with memory page size granularity. Thus, the 4 KB chunk
size is likely to work well for both memory and disk deduplication.

To discover the portions of disk and memory modified during
the process of creating a launch VM, we introduce a shim layer be-
tween the VMM and the backing files for virtual disk and memory
using FUSE, as shown in Figure 3. During the installation and con-
figuration steps of launch VM construction, the shim layer exposes
I/O requests from the VMM to the virtual disk file and memory
snapshot file. On every write to either the virtual disk or mem-

0

20

40

60

80

100

(%
)

Zero chunk Duplicates at overlay mem

Duplicates within itself Duplicates at base mem

Duplicates at base disk Unique chunk

OBJECT FACE SPEECH AR FLUID

Figure 4: Benefit of Deduplication

ory snapshot, we redirect the write to the corresponding overlay
file and mark a bitmap indicating this chunk has changed. When
reads occur at a later point in time, we consult this bitmap to deter-
mine if the read should be serviced from the original base files, or
from the new overlay files. As in [30], we have found that FUSE
has minimal impacts on virtual disk accesses, despite the fact that
it is on the critical read and write paths from the VM to its disk.
However, memory operations would become prohibitively expen-
sive with this additional component. We therefore do not use FUSE
to capture memory changes. Rather, we capture the entire memory
snapshot only after we finish customizing the launch VM. We then
interpret this memory snapshot, and compare it with base memory
to obtain the modified memory chunks and corresponding bitmap.

We reuse this FUSE shim layer at VM synthesis time to avoid the
data copying that would be required to explicitly merge the overlay
virtual disk/memory with the base to reconstruct the launch VM.
Instead, we redirect VM disk/memory access to either the overlay
or the base image based on the bitmap. This approach to just-in-
time reconstruction of a launch image has been used previously in
systems such as ISR [20] and the Collective [3], though only for
VM disk.

Once we have a list of modified disk and memory chunks, we
perform deduplication by computing SHA-256 hashes [12] of their
contents. We use these hashes to construct a unique set of pages
which are not contained within the base VM and must be included
in the transmitted overlay. We construct the set of unique modified
disk and memory chunks using five comparison rules: (1) com-
pare to base VM disk chunks, (2) compare to base VM memory
chunks, (3) compare to other chunks within itself (within modified
disk or modified memory respectively), (4) compare to a zero-filled
chunk, and (5) compare between modified memory and modified
disk. These five comparison rules capture various scenarios that are
frequent sources of data redundancy, as discussed in Section 4.1.

For each unique chunk, we compare it to the corresponding chunk
(same position on disk or in memory) in the base VM. We use the
xdelta3 algorithm to compute a binary delta of the chunk and
transmit only the delta if it is smaller in size than the chunk. The
idea behind this is that even if the hashes do not match, there may
still be significant overlap at a finer byte granularity which a binary
delta algorithm can leverage.

4.3 Evaluation
Figure 4 shows the benefit of deduplication for the overlay of

each application. For any deduplication between memory and disk,
we choose to only retain the duplicated chunks within memory. For
deduplication purposes, it does not matter if the canonical chunk
resides within disk or memory; we chose the memory snapshot as
the canonical source of chunks.

Averaged across the five applications, only 22% of the modi-
fied disk and 77% of the modified memory is unique. The biggest
source of redundancy is between modified memory and modified
disk: each application exhibits greater than 58% duplication, with
SPEECH exhibiting 83% duplication. The base disk is the second
biggest source of duplication. On average, 13% of the modified
disk and 21% of the modified memory are identical with chunks in
the base disk. We analyzed files associated with the duplicated
chunks for the OBJECT application. Our findings are consis-
tent with our intuition: most of the associated files in the modi-
fied disk are shared resources located within the /usr/shared/,
/usr/lib/, and /var/lib/ directories, and a large portion of the
files are shared libraries such as libgdk-x11, libX11-xcb, and
libjpeg. The overlay memory shows similar results, but it also
includes copies of executed binaries such as wget, sudo, xz, dpkg-
trigger, and dpkg-deb in addition to shared libraries.

5. BRIDGING THE SEMANTIC GAP

5.1 Concept
The strong boundary enforced by VM technology between the

guest and host environments is a double-edged sword. On the one
hand, this strong boundary ensures isolation between the host, the
guest, and other guests. On the other hand, it forces the host to
view each guest as a black box, whose disk and memory contents
cannot be interpreted in terms of higher-level abstractions such as
files or application-level data structures. This challenge was first
recognized by Chen and Noble [4]. Various attempts to bridge the
semantic gap between VMM and the guest include VM introspec-
tion for intrusion and malware detection [13, 18] and memory clas-
sification [2] for improving prefetcher performance.

The semantic gap between low-level representations of memory
and disk, and higher-level abstractions is also problematic when
constructing VM overlays. For example, suppose a guest applica-
tion downloads a 100 MB file, and later deletes it. Ideally, this
should result in no increase in the size of the VM overlay. How-
ever, the VMM will see up to 200 MB of modifications: 100 MB of
changed disk state, and 100 MB of changed memory state. This is
because the file data moves through the in-memory I/O buffer cache
of the guest OS before reaching the disk, effectively modifying both
memory state and disk state. When the file is deleted, the guest OS
marks the disk blocks and corresponding page cache entries as free,
but their (now garbage) contents remain. To the VMM, this is in-
distinguishable from important state modifications that need to be
preserved. Deduplication (described in Section 4) can cut this state
in half, but we would still unnecessarily add 100 MB to the overlay.

Ideally, only the state that actually matters to the guest should
be included in the overlay. When files are deleted or memory
pages freed, none of their contents should be incorporated into the
overlay. In essence, we need semantic knowledge from the guest
regarding what state needs to be preserved and what can be dis-
carded. When constructing the launch VM, a user (or application
developer) installs a back-end application server on the base VM.
This installation process typically involves several steps including
downloading installation packages, creating temporary files, and
moving executable binaries to target directories. Also, it is likely

that all unneeded files will be deleted after finishing the installation
process. We note that there is nothing unusual about this procedure
for constructing custom VMs; it is identical to how custom VMs are
typically generated in Amazon EC2, for example. We wish to fully
leverage the user’s intent when producing the overlay. We discard
chunks containing semantically unnecessary footprint of the instal-
lation process by bridging the semantic gap between the VMM and
guest in a manner that is transparent to guests.

In separate sections below, we show how this semantic gap can
bridged for disk and memory state.

5.2 Implementation: Disk
To accurately account for disk blocks that are garbage, we need

either (1) a method of communicating this information from the
guest OS to the host, or (2) a method of scanning the contents of the
file system on the virtual disk to glean this OS-level information.
The first approach requires guest support, and may not be possible
for every guest OS. The second approach requires no guest sup-
port, but does require an understanding of the on-disk file system
format. Both approaches may be used in tandem to cross-check
their results.

Exploiting TRIM support: The TRIM command in the ATA
standard enables an OS to inform a disk which sectors are no longer
in use. This command is important for modern devices such as
Solid State Drives (SSDs) which implement logic to aggressively
remap writes to unused sectors. Wear-leveling algorithms and gar-
bage collection inside of SSDs use this knowledge to increase write
performance and device life.

The TRIM command provides precisely the mechanism we de-
sire — an industry-standard mechanism for communicating seman-
tic information about unused sectors from an OS to the underlying
hardware. We can exploit this mechanism to communicate free disk
block information from the guest OS to the host to reduce VM over-
lay size. We modify the VMM (KVM/QEMU) to capture TRIM
events and to log these over a named pipe to our overlay generation
code. When generating the overlay, we merge this TRIM log with
a trace of sector writes by timestamp to determine which blocks are
free when the VM is suspended; these blocks can be safely omitted
from the overlay. To make use of this technique, we simply need
to ensure that TRIM support is enabled in the guest OS. As TRIM
is an industry standard, it is supported by almost all modern oper-
ating systems, including recent Linux distributions and Windows 7.

Introspecting the file system: An alternative approach is to use
knowledge of the on-disk file system format to directly inspect the
contents of a virtual disk [19, 37] and determine which blocks are
currently unused. Many file systems maintain lists of free blocks
forming a canonical set of blocks which should not be included in
an overlay. In the worst case, the entire file system can be crawled
to determine which blocks are in use by files within the file system.
Although this approach is file-system-specific, it avoids the need
to communicate information from a running guest, or to carefully
trace TRIM and write events.

We identify free disk blocks using the tool described by Richter
et al. [37]. This tool reads and interprets a virtual disk image and
produces a list of free blocks. It supports the ext2/3/4 family of
Linux file systems and the NTFS file system for Windows.

5.3 Implementation: Memory
It is difficult to determine which memory pages are considered

free by a guest OS. Although the VMM can inspect the page ta-
bles, this is not sufficient to determine if a page is in use because

unmapped pages are not necessarily free [2]. Inspecting page con-
tents is also not good enough, because free pages normally contain
random data and are not zeroed.

To bridge this gap, there are two natural approaches: (1) com-
municate free page information from the guest OS to the host, or
(2) interpret memory layout data structures maintained by the guest
OS. Unfortunately, there is no standard way of accomplishing the
first approach (i.e., no memory counterpart to TRIM support), so
we focus our efforts on the second approach. In order to obtain
the list of free memory pages we first introduce a tiny kernel mod-
ule into Linux guests. This module exposes the memory addresses
of two data structures for memory management through the /proc
file system in the guest. We suspend the VM, and feed these ad-
dresses and the memory snapshot to an offline scanning program.
This scanning program reads the memory snapshot and parses the
memory management data structures at the specified addresses to
identify the free pages.

Since our approach requires modifying the guest OS, it is not
usable on closed-source OSs such as Windows. Further, in-memory
data formats tend to be highly volatile across OS releases, and to
evolve much more rapidly than file system formats. Even an open-
source kernel such as Linux will require significant maintenance
effort to track these changes.

Other techniques could be employed to infer free pages without
the need for guest support. For example, a VMM could monitor
memory accesses since the guest’s boot and keep track of pages
that have been touched. This would avoid guest modification at the
cost of lower fidelity—some of the pages reported as used could
have been touched, but later freed. Perhaps with the advent of Non-
Volatile Memories (NVMs), which provide persistent storage with
memory-like, byte-addressable interfaces, there may be a need to
introduce a standardized TRIM-like feature for memory. Such sup-
port would make it possible to bridge the memory semantic gap in
an OS-agnostic way in the future.

5.4 Evaluation
For the disk semantic gap, our experiments show that the TRIM

and introspection approaches produce nearly identical results. Just
a few additional free blocks are found by the introspection approach
that were not captured by TRIM. We therefore present only the
results for the TRIM approach.

Figure 5 shows how much we gain by closing the disk semantic
gap. For each application we construct the VM image by down-
loading its installation package, installing it, and then deleting the
installation package. We therefore expect our approach to find and
discard the blocks that held the installation package, reducing over-
lay size by approximately the installation package size. Our results
confirm this for all of the applications except one: for FACE, the
semantically discarded disk blocks together were smaller than the
installation package. On investigation, we found that this was due
to the freed blocks being reused post-install. On average, across
the five applications, bridging the disk semantic gap allows 25% of
modified disk chunks to be omitted from the overlay.

Figure 5 also shows the savings we can achieve by discarding
free memory pages from the VM overlay. We can discard on av-
erage 18% of modified memory chunks for the Linux applications
OBJECT, SPEECH, and FLUID. Since our implementation is
limited to Linux, we cannot reduce the memory overlays for the
two Windows-based applications (FACE and AR).

Combining deduplication and bridging of the semantic gap can
be highly effective in reducing the VM overlay size. Figure 6 shows
VM overlay size with each optimization individually represented,
and also combined together. The “baseline” represents VM over-

26% 15%

10%

0%* 39%
21%

38%

0%*

12%
18%

0

40,000

80,000

120,000

160,000

M
o

d
if

ie
d

 c
h

u
n

k
 #

Discarded by reducing semantic gap

Final modified chunks

OBJECT FACE SPEECH AR FLUID
∗Our implementation cannot determine free memory pages for
Windows guests.
∗Percentage represents the fraction of discarded chunks.

Figure 5: Savings by Closing the Semantic Gap

lay size using the approach described in Section 3. The bar la-
beled “deduped” is the VM overlay with deduplication applied;
“semantics” is the VM overlay with semantic knowledge applied
(only disk for Windows applications); and, “combined” is the VM
overlay size with both optimizations applied. On average compared
to the baseline implementation, the deduplication optimization re-
duces the VM overlay size to 44%. Using semantic knowledge
reduces the VM overlay size to 55% of its baseline size. Both opti-
mizations applied together reduce overlay size to 28% of baseline.

The final overlay disk almost disappears when we combine both
optimizations. This is because a large portion of disk chunks are
associated with installation packages. Recall that to install each ap-
plication, we first download an installation package in the VM and
remove it later when it finishes installation. This installation file is
already compressed, so further compression does little. In addition,
this newly introduced data is less likely to be duplicated inside the
base VM. Therefore, applying semantic knowledge removes most
of the unique chunks not found by deduplication. For example in
AR, 25,887 unique chunks remained after deduplication, but 96%
of them are discarded by applying semantic knowledge.

6. PIPELINING

6.1 Concept
There are three time-consuming steps in VM synthesis. First, the

VM overlay is transferred. Next, the VM overlay is decompressed.
Finally, the decompressed VM overlay is applied to the base VM
(i.e., xdelta3 in reverse). These steps are serialized because we
need the output of the preceding step as input to the next one, as
shown in Figure 7. This serialization adds significantly to the VM
start latency on a cloudlet. If we could begin the later steps before
the preceding ones complete, we could shrink the total time for
synthesis as shown in Figure 8.

6.2 Implementation
The implementation follows directly from the pipelining con-

cept. We split the VM overlay into a set of segments and operate
on each segment independently. The VM synthesis steps can now
be pipelined. The decompression of a segment starts as soon as it
is transferred, and happens in parallel with the transfer of the next
segment. Likewise, the application of an overlay segment to the
base VM proceeds in parallel with the decompression of the next

48% 51%

22% 33% 37% 30%

52% 52%
30%

61% 64%

41%

28% 70% 16%
0

100

200

300

400

500

S
iz

e
(M

B
)

overlay disk

overlay memory

OBJECT FACE SPEECH AR FLUID

Figure 6: Overlay Size Compared to Baseline (Percentage represents relative overlay size compared to baseline)

Figure 7: Baseline VM Synthesis

Figure 8: Pipelined VM Synthesis

segment. Given sufficiently small segment size, the total time will
approach that of the bottleneck step (typically the transfer time),
plus any serial steps such as VM instance creation and launch.

6.3 Evaluation
Figure 9 compares the performance of the baseline synthesis ap-

proach to an optimized one that combines deduplication, semantic
gap closing, and pipelining. The results confirm that once pipelin-
ing is introduced, transfer time becomes the dominant contributor
to the total synthesis time. The synthesis time shown in Figure 9
includes all of the time needed to get the VM to the point where
it is fully resumed and ready to accept offload requests from the
mobile device. Two applications now launch within 10 seconds
(FACE and FLUID), while two others launch within 15 seconds
(OBJECT and SPEECH). Only AR takes much longer (44 sec-
onds), but this is because its overlay size and, therefore, transfer
time remains high. On average, we observe a 3x–5x speedup com-
pared to the baseline VM synthesis approach from Section 3.

7. EARLY START

7.1 Concept
We have shown that the optimizations described in the previous

sections greatly reduce the size of overlays and streamline their
transfer and processing. For several of the applications, the opti-
mized overlay size is close to the size of the install image. Hence,
there is little scope for further reducing size to improve launch
times. Instead, we consider whether one really needs to transfer
the entire overlay before launching the VM instance. This may
not be necessary for a number of reasons. For example, during

OBJECT FACE SPEECH AR FLUID
% chunks 17.4 56.9 26.8 65.2 27.1

% size 30.6 63.0 33.0 87.9 50.3

Percentage of the overlay accessed between VM launch and
completion of first request, in terms of chunks and compressed
overlay size.

Table 5: Percentage of Overlay Accessed

the overlay creation process, the guest OS was already booted up
and the application was already launched at the point when the VM
was suspended. Any state that is used only during guest boot-up
or application initialization will not be needed again. As another
example, some VM state may only be accessed during exception
handling or other rare events and are unlikely to be accessed imme-
diately after VM instance creation.

The potential benefits of optimism can be significant. Table 5
shows the percentage of chunks in the overlay that are actually ac-
cessed by the five benchmark applications between VM launch and
completion of the first request. A substantial number of chunks are
not used immediately. We can speed up VM launch by transferring
just the needed chunks first, synthesizing only those parts of the
launch VM, and then creating the VM instance. The transfer of the
missing parts of the overlay and synthesis of the rest of the launch
VM can continue in the background until it is completed.

7.2 Implementation
We explored a number of alternatives in translating the concept

of early start into a viable implementation. One option is to profile
the resume of the launch VM, and order the chunks in the overlay
accordingly. When offloading, the VM is resumed concurrently
with the synthesis operations. If the VM attempts to access chunks
that have not yet been synthesized, it will be blocked until the chunk
becomes available. If the order of chunks is correct, the VM can
begin running significantly before the VM synthesis completes.

Unfortunately, it is difficult to get this order perfectly right. In
our early experiments, multiple profiling runs produced slightly
different chunk access patterns. In particular a small number of
chunks may be accessed early in one run, but not at all in another.
With a large number of chunks, it is unlikely that every chunk that
is needed early in an actual VM resume will have been picked up
in the profiling. More likely, one or more of these chunks will be
missed in profiling, and will be placed near the end of the overlay.
Getting even one chunk wrong can force the VM to wait for all
chunks to be transferred and VM synthesis to complete.

 63

 18 11

 37

 13 8

 63

 20
 15

 140

 62

 44

 7 3 1
0

40

80

120

160

V
M

 s
y

n
th

es
is

 t
im

e
(s

)
VM Resume Applying Delta

Decomp Transfer

OBJECT FACE SPEECH AR FLUID

Figure 9: VM Synthesis Acceleration by Pipelining

Alternatively, we can avoid trying to predict the chunk access
order by using a demand fetching approach, as done in [20], [39],
and many subsequent efforts. Here, the VM is started first, and
the portions of the overlay needed to synthesize accessed chunks
are fetched on demand from the mobile device. Unfortunately,
this approach, too, has some issues. Demand fetching individual
chunks (which can be very small due to deduplication and delta en-
coding) requires many small network transfers, with a round trip
penalty imposed on each, resulting in poor effective bandwidth and
slow transfers. To alleviate this, we can cut the overlay into larger
segments comprised of many chunks, and perform demand fetch-
ing at segment granularities. This will help amortize the demand
fetching costs, but leaves open the question of sizing the segments.
Smaller segments let one fetch more closely just the needed chunks.
Larger segments, in addition to being more bandwidth friendly, can
achieve better compression ratios, but will be less selective in trans-
ferring just what is needed. Finally, how chunks are grouped into
segments can also significantly influence performance. For exam-
ple, if needed chunks are randomly distributed among segments,
one will likely need to transfer the entire overlay to run the VM.

Our implementation uses a hybrid approach that combines profil-
ing and demand paging, similar to VMTorrent [36] though applied
to VM overlays rather than VM images. We make a reasonable
attempt to order the chunks according to a profiled access pattern
computed offline. We then break the overlay into segments. During
offload, we start the VM and begin streaming the segments in order,
but also allow out-of-order demand fetches of segments to preempt
the original ordering. Thus, we use demand fetching to retrieve
chunks that were not predicted by the profiling, but unlike [36], we
simultaneously bulk-stream segments in a work-conserving man-
ner to quickly transfer and synthesize all chunks. While this ap-
proach bears some resemblance to classic prefetching with out-of-
band handling of demand misses, these concepts are being applied
to an overlay rather than a VM image.

Figure 10 illustrates our implementation of this hybrid approach.
A critical issue is that all of the widely used VMMs, including
KVM, Xen, VirtualBox, and VMware, require the entire memory
snapshot before resuming a VM, hindering early start. So, we first
modify the VMM (KVM in our case) to resume a VM without first
reading in the entire memory snapshot. Rather, it now memory
maps the snapshot file, so portions are implicitly loaded when ac-
cessed. We then implement a FUSE file system that hosts the VM
disk image and memory snapshot. This routes disk accesses of the
VMM to our user-level code that can perform just-in-time VM syn-
thesis on the accessed chunks (disk or memory). Our code consults

Synthesis Server

Guest OS (Windows/Linux)

Base Disk

Overlay Disk

Base Memory

Overlay Memory

Filling overlay

Request

Synthesis Server

Mobile Device

Request

Cloudlet

Overlay transfer

QEMU-KVM

FUSE

Disk Memory

Request
Response

Figure 10: System Implementation for Early Start

a small bitmap that indicates whether the particular chunk needs
to be served from the base image or the overlay. If the overlay
is needed, then a local cache of processed chunks is checked. If
the chunk is not available, a demand-fetch of the needed overlay
segment is issued to the mobile device. Concurrently, in the back-
ground, the code processes the stream of overlay segments as it is
received from the mobile device. With this implementation, only
the small bitmap assigning chunks to overlay or base image needs
to be transferred before the VM is launched.

7.3 Evaluation
We evaluate our early start approach with a few different com-

binations of segment size and chunk order. We test with small
(approx. 64KB) and medium (approx. 1MB) sized segments, as
well as with just a single segment comprising the entire overlay.
(The latter effectively disables demand-fetching). We also test with
chunks sorted by access-order (based on a single profiling run of
each application) and offset-order (with memory before disk chunks).
We slightly modify the ordering so that duplicate chunks are con-
tained within the same segment, avoiding any need for pointer-
chasing between segments when handling deduplication.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o

rm
a

li
ze

d
 r

es
p

o
n

se
 t

im
e

OBJECT FACE SPEECH AR FLUID

Offset ordering Access ordering

Figure 11: Normalized First Response Time for Early start

Figure 12: Fully Optimized VM Synthesis

With early-start, the VM synthesis time itself is less relevant.
Rather, the metric we use is the first response time of the appli-
cation. This is measured by having the mobile device initiate the
synthesis of the application VM, and then repeatedly attempt to
send it queries. The response time is measured from the initial
VM start request to when the first reply returns to the client, thus
including the overlapped transfer time, synthesis time, and applica-
tion execution time. Figure 11 compares performance of early start
for different chunk ordering policies and segment sizes. The val-
ues are normalized to the first response time when the VM begins
execution once VM synthesis (including all of the other optimiza-
tions discussed previously) completes. Access ordering alone does
not help significantly due to the inaccuracies of the single profiling
runs. However, access-ordered chunks with demand fetching with
64 KB or 1 MB segments can significantly reduce first response
times. We see up to 60% reduction for SPEECH and OBJECT. For
FLUID, the response time without early start is already so short
that small fluctuations due to compression and network affect the
normalized response time adversely. AR, which requires 90% of
the data in its overlay, does not benefit much from early start.

8. FINAL RESULTS AND DISCUSSIONS

8.1 Fully Optimized VM Synthesis
We have shown that all of the various techniques for improv-

ing VM synthesis described in this paper work quite well on their
own. One may wonder: how effective are these techniques when
combined? In this section we evaluate a complete, fully-optimized
implementation of VM synthesis incorporating all of the improve-
ments described in this paper. The figure of merit here is the total

 144

0

25

50

75

100

OBJECT FACE SPEECH AR FLUID

T
im

e
(s

)

Baseline synthesis

Remote install

Optimized Synthesis

10

Figure 13: First response times

latency as perceived by the user, from the beginning of the appli-
cation offload process to when the first reply is returned. This first
response metric is dependent on the time consumed by the offload-
ing operation and launch of the application VM.

Figure 12 illustrates the fully-optimized process of VM synthe-
sis as we intend it to be used with mobile devices and cloudlet in-
frastructure. We first construct minimal application overlays via
deduplication and by preserving only the semantically meaningful
chunks. We store and serve these overlays to the cloudlet from the
mobile device (a netbook in our experiments). To minimize the
time required to perform VM synthesis, we pipelined the synthesis
steps, and then applied early start on the cloudlet.

Figure 13 shows the improvement in first-response times with
our fully-optimized VM synthesis over the baseline version de-
scribed in Section 3. In this experiment, we used an overlay seg-
ment size of 1 MB, which provides a good tradeoff between de-
mand fetch granularity and good compression. Overall, we im-
proved performance of VM synthesis by a factor of 3 to 8 across
these applications. Except for AR, the first responses for all of the
other applications come within 10 s. A combination of multiple
factors causes significantly longer synthesis times for the AR appli-
cation. First, it has the largest installation size among all five ap-
plications and a significant portion of the installation is a database
file that is less likely to be deduplicated. In addition, we could not
close the memory semantic gap for AR since our implementation
cannot determine free memory pages for Windows guests. Further,
as depicted in Table 5, AR requires almost all of the overlay to serve
the initial request, and, thus, it does not benefit from the early start
optimization.

We also compare our results to the first-response time for a re-
mote installation approach to running a custom VM image. This

1. Create a new EC2 VM instance from an existing Amazon VM image,
2. Attach a cloud block device with VM synthesis tools and base VM image,
3. Change the root file system of the instance to the attached block device,
4. Perform VM synthesis over the WAN to construct the modified VM disk,
5. Mount the modified VM disk,
6. Synchronize / copy the modified file system with the instance’s original,
7. Detach block device,
8. Reboot with the customized file system.

Figure 14: Steps in VM Synthesis for EC2

New VM instance

(/dev/sda)

Block device

(/dev/sdb)

Attach block device that

has VM Synthesis module

and switch root FS to it.

New VM instance

(/dev/sda)

Execute VM Synthesis

and overwrite the result

into original VM instance

Synthesized_VM

Figure 15: VM Synthesis for EC2

involves resuming a standard VM, uploading and installing the ap-
plication packages, and then executing the custom applications. In
Section 3.2, we have already dismissed this approach on qualita-
tive grounds; in particular, even scripted install can be fragile, the
resulting configuration is not identical every time, and the applica-
tion is restarted every time so execution state is not preserved. The
only redeeming quality of this approach is that the install packages
tend to be smaller than the baseline VM overlays, potentially mak-
ing the remote install faster. Here, we use highly optimized appli-
cation packages that are self-contained (including needed libraries,
or statically-compiled binaries), and fully-scripted installation to
show the remote install approach at its fastest.

As we can see from Figure 13, however, our optimized VM syn-
thesis approach produces significantly better first-response times
than remote install in all but one case. In that case, the two ap-
proaches are basically a tie. Thus, our optimized VM synthesis
approach can achieve very fast offload and execution of custom ap-
plication VMs on cloudlets, yet maintain strong guarantees on their
reconstructed state.

8.2 Improved WiFi Bandwidth
All of the experiments in this paper were conducted using 802.11n

WiFi at 2.4 GHz (38 Mbps measured average bandwidth). We ex-
pect these times to improve in the future as new wireless technolo-
gies and network optimizations are introduced, increasing the band-
width of WiFi networks. In other words, VM synthesis time is now
directly correlated to network bandwidth. While WAN bandwidth
improvements require large infrastructure changes, mobile band-
width to the wireless AP at a cloudlet only requires localized hard-
ware and software changes. New WiFi standards such as 802.11ac
promise up to 500 Mbps and are actively being deployed [55]. Re-
cent research [14] also demonstrates methods of increasing band-
width up to 700% with software-level changes for WiFi networks
facing contention. Thus, both industry and research are focused on
increasing WiFi bandwidth. This directly translates into faster VM
synthesis. Based on our measurements, until actual transfer times
improve by 3x, the transfer stage will remain the bottleneck (as-
suming the cloudlet processor remains constant). Beyond this, we
will need to parallelize the decompression and overlay application
stages across multiple cores to benefit from further improvements
in network bandwidth.

10 Mbps 100 Mbps
Synthesis Amazon Synthesis Amazon

Synthesis Setup 44 s — 46 s —
Uploading† 36 s 607 s 8 s 204 s

Post-processing 96 s 139 s 97 s 105 s
Total 180 s 746 s 154 s 310 s

†Upload time for VM synthesis includes all synthesis steps
(overlay transfer, decompression, and applying delta).

Table 6: Time for Instantiating Custom VM at Amazon EC2

9. VM SYNTHESIS ON AMAZON EC2
In this paper, we have presented VM synthesis as a technique to

rapidly offload customized application VMs to cloudlet infrastruc-
ture near a mobile device. However, the technique is much more
general than this, and can help whenever one wishes to transfer VM
state across a bottleneck network. In particular, VM synthesis can
significantly speed up the upload and launch of a custom VM on
commercial cloud services across a WAN. Here, we describe our
VM synthesis solution for Amazon’s public EC2 cloud.

The normal cloud workflow to launch a customized VM involves
three steps: (1) construct the VM image, including installing cus-
tom software and libraries, and making requisite configuration
changes; (2) upload the VM image to the cloud, a step largely lim-
ited by the client-to-cloud bandwidth; and (3) launch and execute
a VM instance based on the uploaded VM image, a step that de-
pends on the cloud provider’s backend scheduling and resources.
VM synthesis promises to speed up the second step by reducing
the amount of state uploaded to a cloud.

Today, no cloud supports VM synthesis as a primitive opera-
tion. In our EC2 implementation, we perform VM synthesis en-
tirely within a running VM instance. EC2 does not allow external
access to the disk or memory image of an instance, so we cannot
manipulate the saved state of a paused instance to effect synthesis.
We also cannot generate a data file, treat it as a VM image, and
launch an instance based on it. We work around these limitations
by performing VM synthesis within a live instance, which modifies
its own state and then reboots into the custom VM environment.
Assuming that the base VM image and synthesis tools have already
been installed in an EC2 block device, synthesis proceeds in the
eight steps shown in Figure 14. Steps 1-3 occur on the left hand
side of Figure 15, while steps 4-8 occur on the right hand side. We
do not handle the memory portion of a VM in EC2 because we do
not have access to the raw memory image. This requires an un-
necessary reboot and wasted time in synchronizing file systems. If
EC2 had a VM synthesis primitive, the memory image and VM
disk could be directly exposed by their infrastructure and only step
4 would remain; the VM overlay would be transmitted, applied,
and then the VM could be directly resumed without reboot.

We compare the time it takes to perform VM synthesis to the
time required in the normal cloud workflow to deploy and execute
a custom VM with the OBJECT application. The results are shown
in Table 6. For VM synthesis, synthesis setup corresponds to steps
1-3, uploading to step 4, and post-processing corresponds to steps
5-8. With the normal Amazon workflow, there is no analog to syn-
thesis setup. However, after upload, Amazon takes time to provi-
sion resources and to boot a VM within EC2; this is included in the
total post-processing time. We present results for two WAN band-
widths, 10 Mbps and 100 Mbps, in Table 6. In both cases, VM syn-
thesis wins over the normal cloud workflow with a 4x improvement
in the 10 Mbps case and a 2x improvement in the 100 Mbps case.
The normal cloud workflow is bottlenecked on bandwidth because
it must upload the full 514 MB compressed VM image, but VM
synthesis reduces this to a much more compact 42 MB VM over-

lay. It is important to note here that pre- and post-processing for
VM synthesis are artificially inflated because of the lack of native
VM synthesis support and the convoluted mechanisms we needed
to employ to work around limitations imposed by EC2.

10. RELATED WORK
Offloading computation has a long history in mobile computing,

especially to improve application performance and battery life [11,
31, 38]. The broader concept of cyber foraging, or “living off
the land” by leveraging nearby computational and data storage re-
sources, was first articulated in 2001 [41]. In that work, the prox-
imity of the helper resources, known as “surrogates,” to the mobile
device was intuitively assumed, but how to provision them was left
as future work. Since then, different aspects of cyber foraging have
been explored by a number of researchers. Some of these efforts
have looked at the tradeoffs between different goals such as exe-
cution speed and energy usage based on adaptive resource-based
decisions on local versus remote execution [9, 10]. Other efforts
have looked at the problem of estimating resource usage of a fu-
ture operation based on past observations, and used this estimate to
pick the optimal execution site and fidelity setting [15, 29]. Many
researchers have explored the partitioning of applications between
local and remote execution, along with language-level and runtime
tools to support this partitioning [1, 5, 7].

Since 2008, offloading computation from a mobile device over
the Internet to a cloud computing service such as Amazon EC2 [45]
has become possible. But, cloud computing places surrogates far
away across a multi-hop WAN rather than nearby on a single-hop
WLAN. A 2009 position paper [42] introduced VM-based surro-
gate infrastructure called “cloudlets.” Proximity of offload infras-
tructure was deemed essential for deeply immersive applications
where crisp interactive response requires end-to-end latency to be
as low as possible. Recent application studies [6, 16] have con-
firmed the need for proximity of offload infrastructure when a mo-
bile device runs interactive and resource intensive applications.

Aspects of the VM overlay concept can be seen in copy-on-
write (COW) mechanisms. Sapuntzakis et al. [39] showed how
COW could be applied hierarchically to VMs to create an efficient
representation of a family of virtual appliances. Their following
work, the Collective [3], advanced this approach and proposed a
cache-based system to cope with various network conditions. Sim-
ilarly, QCOW2, a widely used virtual disk file format, uses a read-
only base image and stores modified data in a separate file [25].
Strata [34] combined union file system and package management
semantics to easily create and deploy virtual appliances and to dy-
namically compose them. VM overlays, as articulated in [42], ex-
tend the base and modifications concept to both VM disk and mem-
ory state, and focuses on a mobile, cyber-foraging use case.

Some aspects of the optimization techniques proposed in this
work have been individually investigated in other domains. Dedu-
plication has been widely adopted in file systems, network storage,
and virtualization. In file systems, it is used to reclaim storage
space by detecting duplicated files or blocks. LBFS (Low Band-
width File System) [27] is an example of a network file system that
uses deduplication to reduce bandwidth demand. It introduced the
use of Rabin fingerprints for defining content-based chunk bound-
aries that are edit-resistant. REBL (Redundancy Elimination at the
Block Level) [22] applied deduplication along with compression
and delta-encoding to achieve effective storage reduction. It intro-
duced the concept of super-fingerprints to reduce the computational
effort of deduplication. Deduplication has also been used in the
virtual machine space. Waldspurger removed duplicated memory
pages and shared identical memory pages across multiple virtual

machines to conserve memory on the host machine [53]. Several
recent works have also used deduplication to reduce the cost of VM
migration both within datacenters [57] and across WANs [56]. As
our work uses deduplication in an offline stage, we can apply it
aggressively across both disk and memory images.

Demand fetching of VM disk state was introduced by Kozuch
et al. [20] and Sapuntzakis et al. [39]. Both leveraged the fact that
only a small portion of a VM disk is typically accessed in a session.
Post-copy migration [17] applied demand fetching of VM mem-
ory to live VM migration to reduce network transmission costs and
the total migration time. Post-copy migration immediately started
the VM at the target destination instead of pre-copying a VM’s
memory state over mulitiple iterations. SnowFlock [23] combined
demand fetching and packet multicasting to provide highly effi-
cient and scalable cloning of VMs. It started VM execution on
a remote site with only critical metadata and performed memory-
on-demand, where clones lazily fetch portions of VM state as it
is accessed. VM image Distribution Network (VDN) [33] used
demand fetching of content-addressed chunks in the datacenter.
VMTorrent [36] enabled scalable VM disk streaming by combin-
ing block prioritization, profile-based execution prefetch, and on-
demand fetch. Our work also uses profiled prefetching and demand-
fetching.

The significance of the semantic gap between VMMs and guest
OSes was first articulated by Chen and Noble [4]. Later, Garfinkel
and Rosenblum [13] coined the term virtual machine introspec-
tion and developed an architecture focusing on analyzing memory.
Another effort to bridge this gap is VMWatcher [18], which en-
abled malware detection by introducing a technique called guest
view casting to systematically reconstruct internal semantic views
of a VM, such as files, processes, and kernel modules, in a non-
intrusive manner. Kaleidoscope [2] exploited x86 architectural in-
formation (e.g. page table entries) to classify VM memory into sets
of semantically-related regions and used this for better prefetching
and faster cloning of a VM into many transient fractional work-
ers. Our work bridges the semantic gap to minimize VM overlay
size by identifying freed pages and blocks, and, to the best of our
knowledge, is the first to use TRIM support for this purpose.

11. FUTURE WORK
Our experiments used a netbook as a surrogate for a powerful

mobile device of the future. Although we expect hardware speci-
fications of smartphones will soon catch up with today’s netbooks,
we plan to repeat our experiments on an Android-based smartphone
to verify the feasibility of our optimizations on these platforms. We
do not anticipate major differences in the results, since most of the
processing in our system is done offline or on the cloudlet, and the
mobile device mostly acts as a sensing, user interaction, and data
storage device.

We also plan to re-engineer our software as an extension to the
widely used OpenStack platform for cloud computing. With this
in mind, we have carefully designed and implemented our system
to support backward compatibility with OpenStack. Acceptance
of our code into OpenStack would simplify the deployment and
widespread use of VM synthesis, especially since some of our op-
timizations require modifications to KVM.

An important aspect of practical cloudlet usage is leveraging
temporal locality of user mobility. In daily life, most users are
likely to follow repeated routines and to frequently revisit a few
locations. Hence, there is high value in caching the results of pre-
vious VM synthesis operations. By reusing cached launch VMs,
the synthesis step can be completely avoided. This can be espe-
cially valuable if the overlay is large.

12. CONCLUSION
Beyond today’s familiar desktop, laptop and smartphone appli-

cations is a new genre of software seamlessly augmenting human
perception and cognition. Supporting the compute-intensive and
latency-sensitive applications typical of this genre requires the abil-
ity to offload computation from mobile devices to widely dispersed
cloud infrastructure, a.k.a., cloudlets. Physical dispersion of cloud-
lets makes their provisioning a challenge. In this paper, we have
shown how cloudlets can be rapidly and precisely provisioned by
a mobile device to meet its exact needs just before use. We have
also shown that although our solution, dynamic VM synthesis, was
inspired by the specific demands of mobile computing, it also has
broader relevance to public cloud computing infrastructure.

We have made our source code available for download at our
project site: http://elijah.cs.cmu.edu/.

13. ACKNOWLEDGEMENTS
We thank our shepherd Jason Nieh and the anonymous review-

ers for their valuable comments and suggestions. We thank Gene
Cahill and Soumya Simanta for implementing the SPEECH and
FACE applications, Alvaro Collet for implementing the OBJECT
application, and Doyub Kim for implementing the FLUID appli-
cation. We also thank Benjamin Gilbert and Jan Harkes for their
valuable discussions throughout the work.

This research was supported by the National Science Foundation
(NSF) under grant numbers CNS-0833882 and IIS-1065336, by
an Intel Science and Technology Center grant, and by the Depart-
ment of Defense (DoD) under Contract No. FA8721-05-C-0003
for the operation of the Software Engineering Institute (SEI), a fed-
erally funded research and development center. This material has
been approved for public release and unlimited distribution (DM-
0000276). Additional support for cloudlet-related research was
provided by IBM, Google, and Bosch.

14. REFERENCES
[1] R. K. Balan, D. Gergle, M. Satyanarayanan, and J. Herbsleb.

Simplifying cyber foraging for mobile devices. In
Proceedings of the 5th International Conference on Mobile
Systems, Applications and Services, San Juan, Puerto Rico,
2007. ACM.

[2] R. Bryant, A. Tumanov, O. Irzak, A. Scannell, K. Joshi,
M. Hiltunen, A. Lagar-Cavilla, and E. de Lara.
Kaleidoscope: Cloud micro-elasticity via VM state coloring.
In Proceedings of the Sixth Conference on Computer
Systems, Salzburg, Austria, 2011. ACM.

[3] R. Chandra, N. Zeldovich, C. Sapuntzakis, and M. S. Lam.
The Collective: A cache-based system management
architecture. In Proceedings of the 2nd Symposium on
Networked Systems Design & Implementation, Boston, MA,
2005.

[4] P. M. Chen and B. D. Noble. When virtual is better than real.
In Proceedings of the Eighth Workshop on Hot Topics in
Operating Systems, Elmau/Oberbayern, Germany, 2001.
IEEE Computer Society.

[5] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
CloneCloud: Elastic execution between mobile device and
cloud. In Proceedings of the Sixth ACM European
Conference on Computer Systems, Salzburg, Austria, 2011.
ACM.

[6] S. Clinch, J. Harkes, A. Friday, N. Davies, and
M. Satyanarayanan. How close is close enough?
Understanding the role of cloudlets in supporting display
appropriation by mobile users. In Proceedings of the IEEE
International Conference on Pervasive Computing and
Communications, Lugano, Switzerland, Mar. 2012.

[7] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. MAUI: Making
smartphones last longer with code offload. In Proceedings of
the 8th International Conference on Mobile Systems,
Applications, and Services, San Francisco, California, USA,
2010. ACM.

[8] J. Flinn. Cyber Foraging: Bridging mobile and cloud
computing via opportunistic offload. Morgan & Claypool
Publishers, 2012.

[9] J. Flinn, D. Narayanan, and M. Satyanarayanan. Self-tuned
remote execution for pervasive computing. In Proceedings of
the Eighth Workshop on Hot Topics in Operating Systems,
Elmau/Oberbayern, Germany, 2001. IEEE Computer
Society.

[10] J. Flinn, S. Park, and M. Satyanarayanan. Balancing
performance, energy, and quality in pervasive computing. In
Proceedings of the 22nd International Conference on
Distributed Computing Systems, Vienna, Austria, 2002.
IEEE Computer Society.

[11] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for
mobile applications. In Proceedings of the Seventeenth ACM
Symposium on Operating Systems Principles, Charleston,
South Carolina, USA, 1999. ACM.

[12] Gallagher, P. Secure Hash Standard (SHS), 2008.
http://csrc.nist.gov/publications/fips/
fips180-3/fips180-3_final.pdf.

[13] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion detection. In In
Proceedings Network and Distributed Systems Security
Symposium, San Diego, California, USA, 2003.

[14] A. Gupta, J. Min, and I. Rhee. WiFox: Scaling WiFi
performance for large audience environments. In
Proceedings of the 8th International Conference on
Emerging Networking Experiments and Technologies, Nice,
France, 2012. ACM.

[15] S. Gurun, C. Krintz, and R. Wolski. NWSLite: A
light-weight prediction utility for mobile devices. In
Proceedings of the Second International Conference on
Mobile Systems, Applications, and Services, Boston, MA,
USA, June 2004.

[16] K. Ha, P. Pillai, G. Lewis, S. Simanta, S. Clinch, N. Davies,
and M. Satyanarayanan. The impact of mobile multimedia
applications on data center consolidation. In Proceedings of
the IEEE International Conference on Cloud Engineering,
San Francisco, CA, Mar. 2013.

[17] M. R. Hines and K. Gopalan. Post-copy based live virtual
machine migration using adaptive pre-paging and dynamic
self-ballooning. In Proceedings of the 2009 ACM
SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, pages 51–60, Washington, DC,
USA, 2009. ACM.

[18] X. Jiang, X. Wang, and D. Xu. Stealthy malware detection
through VMM-based out-of-the-box semantic view
reconstruction. In Proceedings of the 14th ACM Conference
on Computer and Communications Security, Alexandria,
Virginia, USA, 2007. ACM.

[19] R. W. Jones. Libguestfs tools for accessing and modifying
virtual machine disk images, Dec. 2012.
http://http://libguestfs.org/.

[20] M. Kozuch and M. Satyanarayanan. Internet
Suspend/Resume. In Proceedings of the Fourth IEEE
Workshop on Mobile Computing Systems and Applications,
Callicoon, NY, USA, 2002. IEEE Computer Society.

[21] M. D. Kristensen. Execution plans for cyber foraging. In
Proceedings of the 1st Workshop on Mobile Middleware:
Embracing the Personal Communication Device, Leuven,
Belgium, 2008. ACM.

[22] P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey.
Redundancy elimination within large collections of files. In
Proceedings of the USENIX Annual Technical Conference,
Boston, MA, USA, 2004. USENIX Association.

[23] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,

http://elijah.cs.cmu.edu/
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://http://libguestfs.org/

P. Patchin, S. M. Rumble, E. De Lara, M. Brudno, and
M. Satyanarayanan. SnowFlock: Rapid virtual machine
cloning for cloud computing. In Proceedings of the 4th ACM
European Conference on Computer Systems, Nuremberg,
Germany, 2009. ACM.

[24] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision,
60(2):91–110, Nov. 2004.

[25] M. McLoughlin. The QCOW2 image format, Sep. 2008.
http://people.gnome.org/~markmc/
qcow-image-format.html.

[26] R. Miller, Aug. 2012. http://www.
datacenterknowledge.com/archives/2012/08/13/
aol-brings-micro-data-center-indoors-adds-wheels.

[27] A. Muthitacharoen, B. Chen, and D. Mazières. A
low-bandwidth network file system. In Proceedings of the
eighteenth ACM symposium on Operating Systems
principles, Banff, Alberta, Canada, 2001. ACM.

[28] Myoonet. Unique scalable data centers, Dec. 2011.
http://www.myoonet.com/unique.html.

[29] D. Narayanan and M. Satyanarayanan. Predictive resource
management for wearable computing. In Proceedings of the
1st International Conference on Mobile Systems
Applications, and Services, San Francisco, CA, May 2003.

[30] B. Nicolae, J. Bresnahan, K. Keahey, and G. Antoniu. Going
back and forth: Efficient multideployment and
multisnapshotting on clouds. In Proceedings of the 20th
International Symposium on High Performance Distributed
Computing, San Jose, California, USA, 2011. ACM.

[31] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,
J. Flinn, and K. R. Walker. Agile application-aware
adaptation for mobility. In Proceedings of the 16th ACM
Symposium on Operating Systems and Principles,
Saint-Malo, France, Oct. 1997.

[32] OpenCV. OpenCV Wiki.
http://opencv.willowgarage.com/wiki/.

[33] C. Peng, M. Kim, Z. Zhang, and H. Lei. VDN: Virtual
machine image distribution network for cloud data centers. In
Proceedings of the 32nd IEEE International Conference on
Computer Communications, Orlando, FL, USA, 2012. IEEE.

[34] S. Potter and J. Nieh. Improving virtual appliance
management through virtual layered file systems. In
Proceedings of the 25th International Conference on Large
Installation System Administration, pages 3–3, Boston, MA,
2011. USENIX Association.

[35] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and
R. Govindan. Odessa: enabling interactive perception
applications on mobile devices. In Proceedings of the 9th
International Conference on Mobile systems, Applications,
and Services, Bethesda, Maryland, USA, 2011. ACM.

[36] J. Reich, O. Laadan, E. Brosh, A. Sherman, V. Misra,
J. Nieh, and D. Rubenstein. VMTorrent: Scalable P2P virtual
machine streaming. In Proceedings of the 8th International
Conference on Emerging Networking Experiments and
Technologies, Nice, France, 2012. ACM.

[37] W. Richter, M. Satyanarayanan, J. Harkes, and B. Gilbert.
Near-real-time inference of file-level mutations from virtual
disk writes. Technical Report CMU-CS-12-103, Carnegie
Mellon University, School of Computer Science, Feb. 2012.

[38] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning.
Saving portable computer battery power through remote
process execution. Mobile Computing and Communications
Review, 2(1), Jan.

[39] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam,
and M. Rosenblum. Optimizing the migration of virtual
computers. In In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation, Boston,
MA, USA, 2002.

[40] M. Satyanarayanan. Fundamental challenges in mobile
computing. In Proceedings of the ACM Symposium on
Principles of Distributed Computing, Ottawa, Canada, 1996.

[41] M. Satyanarayanan. Pervasive computing: vision and
challenges. Personal Communications, IEEE, 8(4):10–17,
2001.

[42] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies. The
case for VM-based cloudlets in mobile computing. IEEE
Pervasive Computing, 8(4), Oct. 2009.

[43] M. Satyanarayanan, B. Gilbert, M. Toups, N. Tolia, A. Surie,
D. R. O’Hallaron, A. Wolbach, J. Harkes, A. Perrig, D. J.
Farber, M. A. Kozuch, C. J. Helfrich, P. Nath, and H. A.
Lagar-Cavilla. Pervasive personal computing in an Internet
Suspend/Resume system. IEEE Internet Computing, 11(2),
2007.

[44] M. Satyanarayanan, G. Lewis, E. Morris, S. Simanta,
J. Boleng, and K. Ha. The role of cloudlets in hostile
environments. IEEE Pervasive Computing, 12(4), Oct-Dec
2013.

[45] A. W. Services. Overview of Amazon Web Services, Dec.
2010. http://d36cz9buwru1tt.cloudfront.net/AWS_
Overview.pdf.

[46] B. Solenthaler and R. Pajarola. Predictive-corrective
incompressible SPH. ACM Trans. Graph., 28(3):40:1–40:6,
July 2009.

[47] Sphinx-4. Sphinx-4: A speech recognizer written entirely in
the java programming language.
http://cmusphinx.sourceforge.net/sphinx4/.

[48] S. Srinivasa, D. Ferguson, C. Helfrich, D. Berenson,
A. Collet Romea, R. Diankov, G. Gallagher, G. Hollinger,
J. Kuffner, and J. M. Vandeweghe. HERB: A home exploring
robotic butler. Autonomous Robots, 28(1):5–20, Jan. 2010.

[49] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira,
S. Crawford, and A. Pescapè. Broadband Internet
performance: A view from the gateway. In Proceedings of
the ACM SIGCOMM 2011 Conference, Toronto, Ontario,
Canada, 2011. ACM.

[50] G. Takacs, M. E. Choubassi, Y. Wu, and I. Kozintsev. 3D
mobile augmented reality in urban scenes. In Proceedings of
IEEE International Conference on Multimedia and Expo,
Barcelona, Spain, July 2011.

[51] C. Thompson. What is I.B.M.’s Watson? New York Times
Magazine, June 2011. http://www.nytimes.com/2010/
06/20/magazine/20Computer-t.html.

[52] M. Turk and A. Pentland. Eigenfaces for recognition.
Journal of Cognitive Neuroscience, 3(1):71–86, 1991.

[53] C. A. Waldspurger. Memory resource management in
VMWare ESX server. In Proceedings of the 5th Symposium
on Operating Systems Design and Implementation, Boston,
Massachusetts, 2002. ACM.

[54] Wikipedia. Lempel-Ziv-Markov chain algorithm, 2008.
http://en.wikipedia.org/w/index.php?title=
Lempel-Ziv-Markov_chain_algorithm&oldid=
206469040.

[55] Wikipedia. List of 802.11ac Hardware, 2012.
http://csrc.nist.gov/publications/fips/
fips180-3/fips180-3_final.pdf.

[56] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. van der
Merwe. CloudNet: Dynamic pooling of cloud resources by
live WAN migration of virtual machines. In Proceedings of
the 7th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, Newport Beach,
California, USA, 2011. ACM.

[57] X. Zhang, Z. Huo, J. Ma, and D. Meng. Exploiting data
deduplication to accelerate live virtual machine migration. In
Cluster Computing (CLUSTER), 2010 IEEE International
Conference on, Heraklion, Greece, 2010. IEEE.

http://people.gnome.org/~markmc/qcow-image-format.html
http://people.gnome.org/~markmc/qcow-image-format.html
http://www.datacenterknowledge.com/archives/2012/08/13/aol-brings-micro-data-center-indoors-adds-wheels
http://www.datacenterknowledge.com/archives/2012/08/13/aol-brings-micro-data-center-indoors-adds-wheels
http://www.datacenterknowledge.com/archives/2012/08/13/aol-brings-micro-data-center-indoors-adds-wheels
http://www.myoonet.com/unique.html
http://opencv.willowgarage.com/wiki/
http://d36cz9buwru1tt.cloudfront.net/AWS_Overview.pdf
http://d36cz9buwru1tt.cloudfront.net/AWS_Overview.pdf
http://cmusphinx.sourceforge.net/sphinx4/
http://www.nytimes.com/2010/06/20/magazine/20Computer-t.html
http://www.nytimes.com/2010/06/20/magazine/20Computer-t.html
http://en.wikipedia.org/w/index.php?title=Lempel-Ziv-Markov_chain_algorithm&oldid=206469040
http://en.wikipedia.org/w/index.php?title=Lempel-Ziv-Markov_chain_algorithm&oldid=206469040
http://en.wikipedia.org/w/index.php?title=Lempel-Ziv-Markov_chain_algorithm&oldid=206469040
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

	Introduction
	Background
	Need for Cyber Foraging
	VM-based Cloudlets

	Dynamic VM Synthesis
	Basic Approach
	Baseline Performance

	Deduplication
	Concept
	Implementation
	Evaluation

	Bridging the Semantic Gap
	Concept
	Implementation: Disk
	Implementation: Memory
	Evaluation

	Pipelining
	Concept
	Implementation
	Evaluation

	Early Start
	Concept
	Implementation
	Evaluation

	Final Results and Discussions
	Fully Optimized VM Synthesis
	Improved WiFi Bandwidth

	VM Synthesis on Amazon EC2
	Related Work
	Future Work
	Conclusion
	Acknowledgements
	References

