
Kiryong Ha∗, Padmanabhan Pillai†, Wolfgang Richter∗

Yoshihisa Abe∗, Mahadev Satyanarayanan∗

*Carnegie Mellon University, †Intel Labs

6/27/2013

Just-in-Time Provisioning

for Cyber Foraging

Cloud Offloading

Rich, interactive applications are emerging in mobile context

• Apple’s Siri, AR apps..

• Wearable devices push this trend even more!

Cloud offloading

• These applications are too expensive to run on clients alone!

• Offload computation to a back-end server at cloud

• MAUI (Mobisys ‘10), Odessa (MobiSys ‘11), COMET (OSDI ‘12)

Today’s cloud is a suboptimal place; high latency and limited bandwidth

6/27/2013 [intro][background][optimization][result][conclusion]

Cloudlet as a Nearby Offload Site

Cloudlet: an nearby offloading site dispersed at the edges of the Internet

 Let’s bring the cloud closer!

6/27/2013

WAN Cloud

Cloudlet

Nokia Siemens Networks
& IBM

Nvidia

How to launch a custom back-end server at an arbitrary edge?

[intro][background][optimization][result][conclusion]

Challenges in provisioning

1. Support widest range of user customization including OS, language, and library

2. Strong isolation between untrusted computations

3. Access control, metering, dynamic resource management, …

  VM (virtual machine) cleanly encapsulates this complexity, but delays provisioning

Just-in-Time Provisioning

6/27/2013

Cloudlet

GOAL : Just-in-time provisioning of a custom VM for offloading

A traveler wants to use natural language

translation with speaker-trained voice

recognition

[intro][background][optimization][result][conclusion]

VM Synthesis

VM Synthesis: dividing a custom VM into two pieces

1) Base VM: Vanilla OS that contains kernel and basic libraries

2) VM overlay: A binary patch that contains customized parts

6/27/2013

Base

Disk

Base

Memory

Modified

Disk

Modified

Memory

Base VM
Customized VM

(Launch VM)

Diff

Memory

Diff Disk

– =

Binary delta

Overlay

Memory

Overlay

Disk

VM overlay

Compress

[intro][background][optimization][result][conclusion]

VM Synthesis

Steps for VM synthesis

6/27/2013

with pre-populated

base VM
Synthesize VM

- Decompress

- Apply delta

Resume
launch VM

User

Offload operations

Cloudlet

Backend

Server in VM

[intro][background][optimization][result][conclusion]

VM Synthesis – Baseline Performance

• Performance measurement with rich, interactive applications

• Base VM: Windows 7 and Ubuntu 12.04

– 8GB base disk and 1GB base memory

Application

Install size
(MB)

Overlay Size Synthesis
time (s) Disk (MB) Memory (MB)

OBJECT 39.5 92.8 113.3 62.8

FACE 8.3 21.8 99.2 37.0

SPEECH 64.8 106.2 111.5 63.0

AR 97.5 192.3 287.9 140.2

FLUID 0.5 1.8 14.1 7.3

Reduce VM synthesis time as little as 10 seconds!

802.11n WiFi (average 38 Mbps)

6/27/2013 [intro][background][optimization][result][conclusion]

Overview of Optimizations

1. Minimize VM overlay size

Deduplication

Reducing

Semantic Gaps

Launch

VM

Creating VM overlay (offline)

new site

VM synthesis (runtime)

Pipelining

Launch

VM
VM

overlay

VM

overlay

Early Start

6/27/2013

file save

transfer

2. Accelerate VM synthesis

[intro][background][optimization][result][conclusion]

1.1 Deduplication

Approach

• Remove redundancy in the VM overlay

• Sources of redundancy

1) Between base VM and VM overlay

• Shared library copied from base disk

• Loaded executable binary from base disk

2) Between VM overlay’s memory and disk

• Page cache, disk I/O buffer

6/27/2013 [intro][background][optimization][result][conclusion]

type offset reference
Data or
pointer

mem 4096 unique data

mem 16384 self

mem 20480 Base disk

mem 28672 Base memory

mem 36864 unique data

…

disk 0 unique data

disk 16384 overlay mem

1.1 Deduplication

1. Get the list of modified (disk, memory) chunks at the customized VM

2. Perform deduplication to reduce this list to a minimum

• Compare to 1) base disk, 2) base memory, 3) other chunks within itself

• Compare between modified memory and modified disk

6/27/2013

type offset Data

mem 4096 data

mem 16384 data

mem 20480 data

mem 28672 data

mem 36864 data

…

disk 0 data

disk 16384 data

<Modified chunks> <Overlay chunks>

Base VM

[intro][background][optimization][result][conclusion]

1.2 Reducing Semantic Gaps

VM is a strong black box

• It ensures isolation between the host, the guest, and other guests

• But, VMM cannot interpret high-level information of memory and disk

Example: Download 100 MB file over network and delete it

• Ideally, it should result in no increase in VM overlay size

• However, VMM will see 200 MB of modifications:

– 100 MB of changed disk state

– 100 MB of changed memory state (in-memory I/O buffer cache)

 Let’s include only the state that actually matters to the guest OS

6/27/2013 [intro][background][optimization][result][conclusion]

1.2 Reducing Semantic Gaps – Disk

Disk semantic gap between VMM and Guest OS

• File deletion operations only mark blocks as deleted, without discarding the contents

• VMM can’t distinguish between deleted and valid contents

Implementation: TRIM support

• ATA standard originally designed to improve SSD’s overwrite performance

• Allows an OS to inform a SSD which blocks of data are no longer in use

TRIM support at QEMU

• Modify QEMU’s IDE emulation to enable TRIM

• Guest OS agnostic: Linux (kernel 2.6.28), Mac OS X (June 2011), Window 7

6/27/2013

time:1349399899.473041, sector_number:5244928, sector_size:16

time:1349399899.473046, sector_number:5375998, sector_size:3394

...

[intro][background][optimization][result][conclusion]

1.2 Reducing Semantic Gaps – Memory

Memory semantic gap between VMM and Guest OS

• Released memory is moved to the OS’s free page list, but is still filled with garbage

• VMM can’t distinguish between valid memory and garbage data

Approach

• No way to communicate free page information between the guest and VMM
 scan memory snapshot

Implementation

• Insert a small agent at guest OS

– Get memory address of the kernel data
structure that has the free memory list

– Need guest help : currently, works only in Linux

• Extract free memory pages by traversing

the data structure

6/27/2013 [intro][background][optimization][result][conclusion]

VM Overlay Size

• Deduplication optimization reduces the VM overlay size to 44%

• Using semantic knowledge reduces the VM overlay size to 55%

• Both applied together, overlay size is reduced to 28% of baseline

48%
51%

22% 33% 37% 30%

52% 52%

30%

61% 64%

41%

28% 70% 16%

0

100

200

300

400

500

(MB)

overlay disk

overlay memory

OBJECT FACE SPEECH AR FLUID

6/27/2013 [intro][background][optimization][result][conclusion]

Overview of Optimizations

1. Minimize VM overlay size

2. Accelerate VM synthesis

Deduplication

Reducing

Semantic Gaps

Launch

VM

Creating VM overlay (offline)

new site

VM synthesis (runtime)

Pipelining

Launch

VM
VM

overlay

VM

overlay

Early Start

6/27/2013

file save

transfer

[intro][background][optimization][result][conclusion]

2.1 Pipelining

• Steps for VM synthesis

① Transfer VM overlay ② Decompress ③ Apply delta

Memory

Transfer

Memory

Decomp

Memory

Delta

VM

Resume

Disk

Transfer

Disk

Decomp

Disk

Delta

Memory

Delta

Disk

Transfer

Disk

Delta

Memory

Decomp

Disk

Decomp

Memory

Transfer

<Sequential>

<Pipelined>

6/27/2013

VM

Resume

[intro][background][optimization][result][conclusion]

• Complexities in removing inter-dependencies among blobs

2.2 Early Start

Approach

• From user’s perspective, first response time of offloading is most important

• Starting VM even before finishing VM synthesis?

 Do not wait until VM synthesis finishes, but start offloading immediately and process

the request while synthesis is ongoing

6/27/2013 [intro][background][optimization][result][conclusion]

2.2 Early Start

Implementation

1) Reorder the chunks in estimated access-order

2) Break the ordered overlay into smaller segments for demand fetching

 Start the VM and begin streaming the segments in order, but also allow

out-of-order demand fetches to preempt the original ordering

6/27/2013 [intro][background][optimization][result][conclusion]

FUSE

Filling overlay

Transfer VM overlay

Diagram of Early Start

VM (back-end server)

VMM (KVM)

Disk

Base Disk

Memory

Base
Memory

Synthesis
Server

Mobile

Offload Request

6/27/2013

Application

Synthesis client

Overlay
Disk

Overlay
Memory

[intro][background][optimization][result][conclusion]

Review of Optimizations

Deduplication

Reducing

Semantic Gaps

Launch

VM

Creating VM overlay (offline)

new site

VM synthesis (runtime)

Pipelining

Launch

VM
VM

overlay

VM

overlay

Early Start

6/27/2013

file save

transfer

[intro][background][optimization][result][conclusion]

First-response time compared to baseline

Time between starting VM synthesis and receiving the first offload result

• It is faster than remote installation maintaining strong guarantees

• Except AR, we can get first-response within 10 seconds (up to 8x improvement)

* Chunks are ordered with segment size of 1 MB

6/27/2013

 144

0

25

50

75

100

OBJECT FACE SPEECH AR FLUID

T
im

e
(s

)

Baseline synthesis

Fully optimized synthesis

Remote install

10

[intro][background][optimization][result][conclusion]

Future work & Conclusion

Future work

• Open source : http://github.com/cmusatyalab/elijah-cloudlet

• Integrate with OpenStack (open-source cloud computing platform)

Conclusion

• Cloudlets support resource-intensive and interactive mobile apps

• Physical dispersion of cloudlets makes their provisioning a challenge

• We have shown how cloudlets can be rapidly provisioned

6/27/2013 [intro][background][optimization][result][conclusion]

http://github.com/cmusatyalab/elijah-cloudlet
http://github.com/cmusatyalab/elijah-cloudlet
http://github.com/cmusatyalab/elijah-cloudlet

