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ABSTRACT
We describe the architecture and prototype implementation
of an assistive system based on Google Glass devices for
users in cognitive decline. It combines the first-person im-
age capture and sensing capabilities of Glass with remote
processing to perform real-time scene interpretation. The
system architecture is multi-tiered. It offers tight end-to-end
latency bounds on compute-intensive operations, while ad-
dressing concerns such as limited battery capacity and lim-
ited processing capability of wearable devices. The system
gracefully degrades services in the face of network failures
and unavailability of distant architectural tiers.

Categories and Subject Descriptors
D.4.7 [Software]: Operating System – Organization and
Design

General Terms
Design, Experimentation, Measurement

Keywords
wearable computing; mobile computing; cloud computing;
cloudlet; cloud offload; cyber foraging; virtual machine;
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1. INTRODUCTION
Today, over 20 million Americans are affected by some

form of cognitive decline that significantly affects their abil-
ity to function as independent members of society. This
includes people with conditions such as Alzheimer’s disease
and mild cognitive impairment, survivors of stroke, and peo-
ple with traumatic brain injury. Cognitive decline can man-
ifest itself in many ways, including the inability to recognize
people, locations and objects, loss of short- and long-term
memory, and changes in behavior and appearance. The po-
tential cost savings from even modest steps towards address-
ing this challenge are enormous. It is estimated that just
a one-month delay in nursing home admissions in the US
could save over $1 billion annually. The potential win is
even greater when extrapolated to global scale.
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Wearable devices such as Google Glass offer a glimmer of
hope to users in cognitive decline. These devices integrate
first-person image capture, sensing, processing and commu-
nication capabilities in an aesthetically elegant form factor.
Through context-aware real-time scene interpretation (in-
cluding recognition of objects, faces, activities, signage text,
and sounds), we can create software that offers helpful guid-
ance for everyday life much as a GPS navigation system
helps a driver. Figure 1 presents a hypothetical scenario
that is suggestive of the future we hope to create.

An ideal cognitive assistive system should function “in the
wild”with sufficient functionality, performance and usability
to be valuable at any time and place. It should also be suf-
ficiently flexible to allow easy customization for the unique
disabilities of an individual. Striving towards this ideal, we
describe the architecture and prototype implementation of a
cognitive assistance system based on Google Glass devices.
This paper makes the following contributions:

• It presents a multi-tiered mobile system architecture
that offers tight end-to-end latency bounds on compute-
intensive cognitive assistance operations, while address-
ing concerns such as limited battery capacity and lim-
ited processing capability of wearable devices.

• It shows how the processing-intensive back-end tier of
this architecture can support VM-based extensibility
for easy customization, without imposing unaccept-
able latency and processing overheads on high data-
rate sensor streams from a wearable device.

• It explores how cognitive assistance services can be
gracefully degraded in the face of network failures and
unavailability of distant architectural tiers.

As an initial step towards wearable cognitive assistance,
we focus on the architectural requirements and implementa-
tion details needed by such systems in the rest of the paper.
We leave other aspects of this research such as user interface
design and context-sensitive user guidance for future work.

2. BACKGROUND AND RELATED WORK

2.1 Assistive Smart Spaces
One of the earliest practical applications of pervasive com-

puting was in the creation of smart spaces to assist people.
These are located in custom-designed buildings such as the
Aware Home at Georgia Institute of Technology [16], the
Gator Tech Smart House at the University of Florida [14],
and Elite Care’s Oatfield Estates in Milwaukie, Oregon [36].
These sensor-rich environments detect and interpret the ac-



Ron is a young veteran who was wounded in Afghanistan and is slowly recovering from traumatic brain injury. He has suffered a
sharp decline in his mental acuity and is often unable to remember the names of friends and relatives. He also frequently forgets
to do simple daily tasks. Even modest improvements in his cognitive ability would greatly improve his quality of life, while also
reducing the attention demanded from caregivers. Fortunately, a new Glass-based system offers hope. When Ron looks at a
person for a few seconds, that person’s name is whispered in his ear along with additional cues to guide Ron’s greeting and
interactions; when he looks at his thirsty houseplant, “water me” is whispered; when he looks at his long-suffering dog, “take
me out” is whispered. Ron’s magic glasses travel with him, transforming his surroundings into a helpful smart environment.

Figure 1: Hypothetical Scenario: Cognitive Assistance for Traumatic Brain Injury

tions of their occupants and offer helpful guidance when
appropriate. They can thus be viewed as first-generation
cognitive assistance systems.

Inspired by these early examples, we aim to free cogni-
tive assistance systems from the confines of a purpose-built
smart space. Simultaneously, we aim to enrich user expe-
rience and assistive value. These goals are unlikely to be
achieved by an evolutionary path from first-generation sys-
tems. Scaling up a smart space from a building or suite
of buildings to an entire neighborhood or an entire city is
extremely expensive and time-consuming. Physical infras-
tructure in public spaces tends to evolve very slowly, over a
time scale of decades. Mobile computing technology, on the
other hand, advances much faster.

Instead of relying on sensors embedded in smart spaces,
we dynamically inject sensing into the environment through
computer vision on a wearable computer. The scenario in
Figure 1 is a good example of this approach. Aided by such
a system, commonplace activities such as going to a shop-
ping mall, attending a baseball game, or transacting business
downtown should become attainable goals for people in need
of modest cognitive assistance.

Using computer vision for sensing has two great advan-
tages. First, it works on totally unmodified environments
— smart spaces are not needed. Second, the sensing can be
performed from a significant physical distance. The video
stream can be augmented with additional sensor streams
such as accelerometer readings and GPS readings to infer
user context. This enables a user-centric approach to cog-
nitive assistance that travels with the user and is therefore
available at all times and places.

2.2 Wearable Cognitive Assistance
The possibility of using wearable devices for deep cogni-

tive assistance (e.g., offering hints for social interaction via
real-time scene analysis) was first suggested nearly a decade
ago [33, 34]. However, this goal has remained unattain-
able until now for three reasons. First, the state of the
art in many foundational technologies (such as computer vi-
sion, sensor-based activity inference, speech recognition, and
language translation) is only now approaching the required
speed and accuracy. Second, the computing infrastructure
for offloading compute-intensive operations from mobile de-
vices was absent. Only now, with the convergence of mo-
bile computing and cloud computing, is this being corrected.
Third, suitable wearable hardware was not available. Al-
though head-up displays have been used in military and
industrial applications, their unappealing style, bulkiness
and poor level of comfort have limited widespread adop-
tion. Only now has aesthetically elegant, product-quality
hardware technology of this genre become available. Google
Glass is the most well-known example, but others are also

being developed. It is the convergence of all three factors at
this point in time that brings our goal within reach.

There have been other wearable devices developed for spe-
cific types of cognitive decline. For example, SenseCam [15]
is a wearable digital camera that takes images of the wearer’s
day. For those with memory decline, it can be used to re-
view the recorded images in order to boost memory recall.
Though valuable, this is a form of offline assistance, and not
readily available while performing day-to-day activities. In
contrast, our work seeks to augment daily life in an interac-
tive, timely manner and to cover a broader range of cognitive
impairments. This leads to different research challenges in
the system design and the requirements.

This paper focuses on interactive cognitive assistance us-
ing Google Glass, which is the most widely available wear-
able device today. A Glass device is equipped with a first-
person video camera and sensors such as an accelerometer,
GPS1, and compass. Although our experimental results ap-
ply specifically to the Explorer version of Glass, our system
architecture and design principles are applicable to any sim-
ilar wearable device. Figure 2 illustrates the main compo-
nents of a Glass device [20].

Figure 2: Components of a Google Glass Device
(Source: adapted from Missfeldt [20])

2.3 Cyber Foraging
Offloading compute-intensive operations from mobile de-

vices to powerful infrastructure in order to improve perfor-
mance and extend battery life is a strategy that dates back
to the late 1990s. Flinn [8] gives a comprehensive survey
of the large body of work in this space. The emergence of
cloud computing has renewed interest in this approach, lead-
ing to commercial products such as Google Goggles, Ama-
zon Silk, and Apple Siri. Among recent research efforts,
MAUI [5] dynamically selects an optimal partitioning of a
C# program to reduce the energy consumption of a mo-
bile application. COMET [12] uses distributed shared mem-
ory to enable transparent offloading of Android applications.
Odessa [29] makes dynamic offloading and parallelism deci-
sions to achieve low latency for interactive perception ap-

1
Google Glass has hardware for GPS but it is not activated. Location

is currently estimated with Wi-Fi localization.



Typical Server Typical Handheld
or Wearable

Year Processor Speed Device Speed

1997 Pentium R© II 266 MHz Palm Pilot 16 MHz

2002 Itanium R© 1 GHz Blackberry 133 MHz
5810

2007 Intel R© 9.6 GHz Apple 412 MHz
CoreTM 2 (4 cores) iPhone

2011 Intel R© 32 GHz Samsung 2.4 GHz
Xeon R© X5 (2x6 cores) Galaxy S2 (2 cores)

2013 Intel R© 64 GHz Samsung 6.4 GHz
Xeon R© E5 (2x12 cores) Galaxy S4 (4 cores)

Google Glass 2.4 GHz
OMAP 4430 (2 cores)

Figure 3: Evolution of Hardware Performance
(Source: adapted from Flinn [8])

plications. All of these research efforts constrain software
to specific languages, frameworks or platforms. In contrast,
as discussed in Section 3.5, we aim to support the widest
possible range of applications without restrictions on their
programming languages or operating systems.

3. DESIGN CONSTRAINTS
The unique demands of cognitive assistance applications

place important constraints on system design. We discuss
these constraints below, and then present the resulting sys-
tem architecture in Section 4.

3.1 Crisp Interactive Response
Humans are acutely sensitive to delays in the critical path

of interaction. This is apparent to anyone who has used a
geosynchronous satellite link for a telephone call. The nearly
500 ms round-trip delay is distracting to most users, and
leads to frequent conversational errors.

Normal human performance on cognitive tasks is remark-
ably fast and accurate. Lewis et al. [17] report that even
under hostile conditions such as low lighting and deliber-
ately distorted optics, human subjects take less than 700
milliseconds to determine the absence of faces in a scene.
For face recognition under normal lighting conditions, ex-
perimental results on human subjects by Ramon et al. [30]
show that recognition times range from 370 milliseconds for
the fastest responses on familiar faces to 620 milliseconds
for the slowest response on an unfamiliar face. For speech
recognition, Agus et al. [2] report that human subjects rec-
ognize short target phrases within 300 to 450 ms, and are
able to detect a human voice within a mere 4 ms.

Ellis et al. [6] report that virtual reality applications that
use head-tracked systems require latencies less than 16 ms to
achieve perceptual stability. More generally, assistive tech-
nology that is introduced into the critical paths of percep-
tion and cognition should add negligible delay relative to the
task-specific human performance figures cited above. Larger
processing delays of more than tens of milliseconds will dis-
tract and annoy a mobile user who is already attention chal-
lenged and in cognitive decline.

Metric Standalone With Offload
Per-image speed (s) 10.49 (0.23) 1.28 (0.12)

Per-image energy (J) 12.84 (0.36) 1.14 (0.11)

Each result is the mean over five runs of an experiment. Stan-
dard deviations are shown in parentheses.

Figure 4: OCR Performance on Glass Device

3.2 Need for Offloading
Wearable devices are always resource-poor relative to server

hardware of comparable vintage [32]. Figure 3, adapted from
Flinn [8], illustrates the consistent large gap in the process-
ing power of typical server and mobile device hardware over
a 16-year period. This stubborn gap reflects a fundamental
reality of user preferences: Moore’s Law works differently
on wearable hardware. The most sought-after features of
a wearable device are light weight, small size, long battery
life, comfort and aesthetics, and tolerable heat dissipation.
System capabilities such as processor speed, memory size,
and storage capacity are only secondary concerns.

The large gap in the processing capabilities of wearable
and server hardware directly impacts the user. Figure 4
shows the speed and energy usage of a Glass device for a
representative cognitive assistance application (optical char-
acter recognition (OCR), described in detail in Section 5.5).
In the configuration labeled“Standalone,” the entire applica-
tion runs on the Glass device and involves no network com-
munication. In the configuration labeled “With Offload,”
the image is transmitted from the Glass device over Wi-
Fi 802.11n to a compute server of modest capability: a Dell
Optiplex 9010 desktop with an Intel R© CoreTM i7 4-core pro-
cessor and 32GB of memory; the result is transmitted back
to the Glass device. As Figure 4 shows, offloading gives al-
most an order of magnitude improvement in both speed of
recognition and energy used on the Glass device. The bene-
fit of offloading is not specific to OCR but applies across the
board to a wide range of cognitive assistance applications.

3.3 Graceful Degradation of Offload Services
What does a user do if a network failure, server failure,

power failure, or other disruption makes offload impossible?
While such failures will hopefully be rare, they cannot be
ignored in an assistive system. It is likely that a user will
find himself in situations where offloading to Internet-based
infrastructure is temporarily not possible. Falling back on
standalone execution on his wearable device will hurt user
experience. As the results in Figure 4 suggest, it will nega-
tively impact crispness of interaction and battery life. Under
these difficult circumstances, the user may be willing to sac-
rifice some other attribute of his cognitive assistance service
in order to obtain crisp interaction and longer battery life.
For example, an assistive system for face recognition may
switch to a mode in which it can recognize only a few faces,
preselected by the user; when offloading becomes possible
again, the system can revert to recognizing its full range of
faces. Of course, the user will need to be alerted to these
transitions so that his expectations are set appropriately.

This general theme of trading off application-specific fi-
delity of execution for response time and battery life was
explored by Noble [24], Flinn [9], Narayanan [22], and oth-
ers in the context of the Odyssey system. Their approach
of creating an interface for applications to query system re-
source state and to leave behind notification triggers is ap-
plicable here. However, assistive applications have very dif-



ferent characteristics from applications such as streaming
video and web browsing that were explored by Odyssey.

3.4 Context-sensitive Sensor Control
Significant improvements in battery life and usability are

possible if high-level knowledge of user context is used to
control sensors on a wearable device [4]. For example, con-
sider a user who falls asleep in his chair at home while watch-
ing TV. While he is asleep, his Glass device does not have
to capture video and stream it for cognitive assistance. In
fact, offering whispered hints during his nap might wake him
up and annoy him. When he wakes up of his own accord,
processing for cognitive assistance should resume promptly.
The challenge is, of course, to reliably distinguish between
the user’s sleeping and waking states. This is the classic
problem of activity recognition from body-worn sensor data,
on which significant progress has been made in the recent
past. These results can be extended to infer context and
then use it for adaptive control of sensor streams.

This problem has many subtle aspects. In the above ex-
ample, if the user falls asleep in a bus or metro rather than in
his living room, the cognitive assistance system should give
him timely warning of his approaching exit even if it wakes
him up from his pleasant nap. In this case, location sensing
will need to remain turned on during his nap even though
other sensors (such as video) may be turned off. More gen-
erally, tight coupling of sensing and context inference in a
feedback loop is valuable in a cognitive assistance system.

3.5 Coarse-grain Parallelism
Human cognition involves the synthesis of outputs from

real-time analytics on multiple sensor stream inputs. A hu-
man conversation, for example, involves many diverse in-
puts: the language content and deep semantics of the words,
the tone in which they are spoken, the facial expressions and
eye movements with which they are spoken, and the body
language and gestures that accompany them. All of these
distinct channels of information have to be processed and
combined in real time for full situational awareness. There
is substantial evidence [28] that human brains achieve this
impressive feat of real-time processing by employing com-
pletely different neural circuits in parallel and then combin-
ing their outputs. Each neural circuit is effectively a process-
ing engine that operates in isolation of others. Coarse-grain
parallelism is thus at the heart of human cognition.

A wide range of software building blocks that correspond
to these distinct processing engines exist today: face recog-
nition [38], activity recognition [41] in video, natural lan-
guage translation [3], OCR [10], question-answering tech-
nology such as that used in Watson [7], and so on. These
cognitive engines are written in a variety of programming
languages and use diverse runtime systems. Some of them
are proprietary, some are written for closed source operat-
ing systems, and some use proprietary optimizing compilers.
Each is a natural unit of coarse-grain parallelism. In their
entirety, these cognitive engines represent many hundreds
to thousands of person years of effort by experts in each
domain. To the extent possible we would like to reuse this
large body of existing code.

4. ARCHITECTURE
The high-level design of Gabriel, our system for wearable

cognitive assistance, is strongly influenced by the constraints

presented in Section 3. We present an overview of Gabriel
here to explain how these constraints are met, and follow
with details of our prototype in Section 5.

4.1 Low-latency Offloading
Gabriel faces the difficult problem of simultaneously satis-

fying the need for crisp, low-latency interaction (Section 3.1)
and the need for offloading processing from a wearable de-
vice (Section 3.2). The obvious solution of using commer-
cial cloud services over a WAN is unsatisfactory because the
RTT is too long. Li et al. [18] report that average RTT from
260 global vantage points to their optimal Amazon EC2 in-
stances is nearly 74 ms, and a wireless first hop would add
to this amount. This makes it virtually impossible to meet
tight latency goals of a few tens of milliseconds, even if cloud
processing takes zero time. There is little evidence that
WAN RTTs will improve significantly in the future, since
most networking deployments today are working towards
improving other aspects of the network such as bandwidth,
security, and manageability rather than latency. Mecha-
nisms such as firewalls, overlay networks, traffic engineering,
and software defined networking tend to increase the soft-
ware path length and number of layers traversed by pack-
ets, thus potentially hurting latency. Recent work on active
control of end-to-end latency shrinks cloud processing time
per operation to meet deadlines, and achieves error bounds
on the order of 50 ms in an end-to-end latency budget of
1200 ms [31]. Unfortunately, this error bound is comparable
to our entire end-to-end latency budget in Gabriel. Further,
we strongly believe that degrading cloud processing quality
to meet latency bounds should only be a last resort rather
than standard operating procedure in cognitive assistance.

Gabriel achieves low-latency offload by using cloudlets [34].
A cloudlet is a new architectural element that represents the
middle tier of a 3-tier hierarchy: mobile device — cloudlet
— cloud. It can be viewed as a “data center in a box” whose
goal is to “bring the cloud closer.” As a powerful, well-
connected and trustworthy cloud proxy that is just one Wi-
Fi hop away, a cloudlet is the ideal offload site for cognitive
assistance. Although widespread deployment of cloudlets
is not yet a reality, commercial interest in cloudlet-like in-
frastructure is starting. In early 2013, for example, IBM
and Nokia-Siemens Networks announced the availability of
a “mobile edge computing platform” [1]. Wearable cogni-
tive assistance can be viewed as a “killer app” that has the
potential to stimulate investment in cloudlets.

Figure 5(a) illustrates how offload works normally in Gabriel.
The user’s Glass device discovers and associates with a nearby
cloudlet, and then uses it for offload. Optionally, the cloudlet
may reach out to the cloud for various services such as cen-
tralized error reporting and usage logging. All such cloudlet-
cloud interactions are outside the critical latency-sensitive
path of device-cloudlet interactions. When the mobile user
is about to depart from the proximity of this cloudlet, a
mechanism analogous to Wi-Fi handoff is invoked. This
seamlessly associates the user with another cloudlet for the
next phase of his travels.

4.2 Offload Fallback Strategy
When no suitable cloudlet is available, the obvious fall-

back is to offload directly to the cloud as shown in Fig-
ure 5(b). This incurs the WAN latency and bandwidth
issues that were avoided with cloudlets. Since RTT and
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bandwidth are the issues rather than processing capacity,
application-specific reduction of fidelity must aim for less fre-
quent synchronous use of the cloud. For example, a vision-
based indoor navigation application can increase its use of
dead reckoning and reduce how often it uses cloud-based
scene recognition. This may hurt accuracy, but the timeli-
ness of guidance can be preserved. When a suitable cloudlet
becomes available, normal offloading can be resumed. To
correctly set user expectations, the system can use audible
or visual signals to indicate fidelity transitions. Some hys-
teresis will be needed to ensure that the transitions do not
occur too frequently.

An even more aggressive fallback approach is needed when
the Internet is inaccessible (Section 3.3). Relying solely on
the wearable device is not a viable option, as shown by the
results of Figure 4. To handle these extreme situations, we
assume that the user is willing to carry a device such as
a laptop or a netbook that can serve as an offload device.
As smartphones evolve and become more powerful, they too
may become viable offload devices. The preferred network
connectivity is Wi-Fi with the fallback device operating in
AP mode, since it offers good bandwidth without requiring
any infrastructure. For fallback devices that do not support
AP mode Wi-Fi, a lower-bandwidth alternative is Bluetooth.
Figure 5(c) illustrates offloading while disconnected.

How large and heavy a device to carry as fallback is a mat-
ter of user preference. A larger and heavier fallback device
can support applications at higher fidelity and thus provide
a better user experience. With a higher-capacity battery, it
is also likely to be able to support a longer period of discon-
nected operation than a smaller and lighter device. However,
running applications at higher fidelity shortens battery life.
One can view the inconvenience of carrying an offload de-
vice as an insurance premium. A user who is confident that
Internet access will always be available, or who is willing to
tolerate temporary loss of cognitive assistance services, can
choose not to carry a fallback offload device.

4.3 VM Ensemble and PubSub Backbone
For reasons explained earlier in Section 3.5, a cloudlet

must exploit coarse-grain parallelism across many off-the-
shelf cognitive engines of diverse types and constructions.
To meet this requirement, Gabriel encapsulates each cog-
nitive engine (complete with its operating system, dynam-
ically linked libraries, supporting tool chains and applica-
tions, configuration files and data sets) in its own virtual
machine (VM). Since there is no shared state across VMs,
coarse-grain parallelism across cognitive engines is trivial
to exploit. A cloudlet can be scaled out by simply adding
more independent processing units, leading eventually to an
internally-networked cluster structure. If supported by a
cognitive engine, process-level and thread-level parallelism
within a VM can be exploited through multiple cores on a
processor — enhancing parallelism at this level will require
scaling up the number of cores. A VM-based approach is
less restrictive and more general than language-based virtu-
alization approaches that require applications to be written
in a specific language such as Java or C#. The specific cog-
nitive engines used in our prototype (discussed in Section 5)
span both Windows and Linux environments.

Figure 6 illustrates Gabriel’s back-end processing struc-
ture on a cloudlet. An ensemble of cognitive VMs, each en-
capsulating a different cognitive engine, independently pro-
cesses the incoming flow of sensor data from a Glass device.
A single control VM is responsible for all interactions with
the Glass device. The sensor streams sent by the device are
received and preprocessed by this VM. For example, the de-
coding of compressed images to raw frames is performed by
a process in the control VM. This avoids duplicate decod-
ing within each cognitive VM. A PubSub mechanism dis-
tributes sensor streams to cognitive VMs. At startup, each
VM discovers the sensor streams of interest through a UPnP
discovery mechanism in the control VM.

The outputs of the cognitive VMs are sent to a single User
Guidance VM that integrates these outputs and performs



higher-level cognitive processing. In this initial implemen-
tation of Gabriel, we use very simple rule-based software.
As Gabriel evolves, we envision significant improvement in
user experience to come from more sophisticated, higher-
level cognitive processing in the User Guidance VM. From
time to time, the processing in the User Guidance VM trig-
gers output for user assistance. For example, a synthesized
voice may say the name of a person whose face appears in
the Glass device’s camera. It may also convey additional
guidance for how the user should respond, such as “John
Smith is trying to say hello to you. Shake his hand.”

Section 3.4 discussed the importance of context-sensitive
control of sensors on the Glass device. This is achieved in
Gabriel through a context inference module in the Control
VM. In practice, this module determines context from the
external cognitive engines and uses this to control sensors.
Referring to the example in Section 3.4, it is this module
that detects that a user has fallen asleep and sends a control
message to the Glass device to turn off the camera.

5. PROTOTYPE IMPLEMENTATION
We have built a prototype of Gabriel that closely follows

the architecture described in the previous section. This pro-
totype uses the Explorer edition of Google Glass, which is
based on Android 4.0.4. Our cloudlet is composed of 4 desk-
top machines, each with an Intel R© Core R© i7-3770 and 32 GB
memory, running Ubuntu 12.04.3 LTS server. The control
VM runs a UPnP server to allow the Glass device to discover
it, and to allow the various VMs to discover the control VM
and PubSub system. The cloudlet uses OpenStack Griz-
zly [27] on QEMU/KVM version 1.0.

5.1 Glass Front-end
A front-end Android application that runs on the Glass

device discovers a cloudlet and connects to its Gabriel back-
end. Our implementation uses the Glass Development Kit
(GDK) [11], which enables Glass-specific features such as
application control via voice. Thus, users can launch the
Gabriel front-end application using voice. After connecting
to the Gabriel back-end, the front-end streams video, GPS
coordinates, and accelerometer readings over Wi-Fi to the
cognitive engines. To achieve low network latency, we have
tested both TCP and UDP. Our experiments showed neg-
ligible difference in response times between TCP and UDP
over Wi-Fi. Since use of UDP adds complexity for maintain-
ing reliable data transmission, we use TCP for each sensor
stream. The User Guidance VM digests the outputs of the
cognitive engines and presents assistance to the user via text
or images on the Glass display or as synthesized speech us-
ing the Android text-to-speech API. A single Wi-Fi TCP
connection is used for this guidance. In the prototype im-
plementation, the output passes through the DeviceComm
module of the Control VM since it represents the single point
of contact for all interactions with the Glass device.

5.2 Discovery and Initialization
The architecture of Gabriel is based on many software

components in multiple VMs working together. Key to mak-
ing this composition work is a mechanism for the different
components to discover and connect with each other.

In our prototype, the control VM is launched first and
provides the servers to which Google Glass and the cogni-
tive engine VMs connect. The User Guidance VM starts

next, followed by the cognitive VMs, which are connected
together on a private virtual network using OpenStack Nova-
networking’s VLAN. This private network can span machine
boundaries, allowing sizable cloudlets to be used. The con-
trol VM is connected to both this private network and the
regular LAN, with a public IP address. The latter is used
to communicate with the Google Glass device.

A UPnP server, which provides a standard, broadcast-
based method of discovering local services in a LAN, runs in
the control VM. This allows the other VMs to find the con-
trol VM when they start. More specifically, at launch, each
VM performs a UPnP query on the private network. The
UPnP server, which is tied to our simplified PubSub system,
replies with a list of published data streams that are avail-
able and the PubSub control channel. The cognitive VMs
subscribe to the desired sensor streams and register their
own processed data streams through the PubSub system.
At a lower level, this establishes TCP connections between
the cognitive VMs and the sensor stream servers in the con-
trol VM, and to the User Guidance VM that subscribes to
all of the processed data streams.

The UPnP server also provides a simple mechanism to
let the Glass device discover the Gabriel infrastructure on a
LAN. On the public interface of the control VM, the UPnP
server replies to queries with the public IP address and port
of the Device Comm server. The Glass front end makes mul-
tiple TCP connections to this to push its sensors streams and
receive cognitive assistance output (passed through from the
User Guidance VM) as well as sensor control information.

When the Glass device is not within the broadcast domain
of a cloudlet running Gabriel, it falls back to using a cloud-
hosted directory of nearby cloudlets. If no cloudlet is found,
the client offloads to an instance of Gabriel in the cloud.
When all else fails, offload to bigger user-carried devices can
be performed, as described in Section 4.2.

5.3 Handling Cognitive Engine Diversity
Our architecture allows cognitive engines to use a variety

of programming frameworks and operating systems. For all
of these components to work together, we do need them to
follow a common communication paradigm. To this end, our
system requires a small amount of glue logic to be written
for each cognitive engine. This code can be thought of as
a wrapper around the cognitive engine, transforming the
inputs and outputs to work with our system. It pulls sensor
data from the streams and presents it in a manner needed
by the cognitive engine (e.g., in the right image format, or
as a file). It also extracts results from the engine-specific
form and transmits it as a processed data stream. This
wrapper is also responsible for discovering and connecting
to the PubSub system, subscribing to the required sensor
streams, and publishing the outputs. Finally, the wrapper
ensures that the cognitive engine processes each data item
(e.g., by signaling a continuously running engine that new
data is available, or relaunching the engine for each item).
All of these functions are simple to implement, and tend
to follow straightforward patterns. However, as they are
tailored to specific cognitive engines, we expect the wrappers
to be packaged with the engines in the cognitive VMs.

5.4 Limiting Queuing Latency
In our flexible and pluggable architecture, a set of compo-

nents communicate using network connections. Each com-
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Figure 7: Two Level Token-based Filtering Scheme

munication hop involves a traversal of the networking stacks,
and can involve several queues in the applications and guest
OSs, over which we have little control. The application and
network buffers can be large, and cause many items to be
queued up, increasing latency. To minimize queuing, we
need to ensure that the data ingress rate never exceeds the
bottleneck throughput, whose location and value can vary
dramatically over time. The variation arises from fluctua-
tions in the available network bandwidth between the Glass
device and cloudlet, and from the dependence of processing
times of cognitive engines on data content.

We have devised an application-level, end-to-end flow con-
trol system to limit the total number of data items in flight
at a given time. We use a token-bucket filter to limit ingress
of items for each data stream at the Glass device, using
returned counts of completed items exiting the system to
replenish tokens. This provides a strong guarantee on the
number of data items in the processing pipeline, limits any
queuing, and automatically adjusts ingress data rate (frame
rates) as network bandwidth or processing times change.

To handle multiple cognitive engines with different pro-
cessing throughputs, we add a second level of filtering at
each cognitive VM (Figure 7). This achieves per-engine rate
adaptation while minimizing queuing latency. Counts of the
items completed or dropped at each engine are reported to
and stored in the control VM. The maximum of these val-
ues are fed back to the source filter, so it can allow in items
as fast as the fastest cognitive engine, while limiting queued
items at the slower ones. The number of tokens corresponds
to the number of items in flight. A small token count min-
imizes latency at the expense of throughput and resource
utilization, while larger counts sacrifice latency for through-
put. A future implementation may adapt the number of
tokens as a function of measured throughput and latency,
ensuring optimal performance as conditions change.

5.5 Supported Cognitive Engines
Our prototype incorporates several cognitive engines based

on available research and commercial software. These are
summarized in Figure 8 and detailed below.

Face Recognition: A most basic cognitive task is the
recognition of human faces. Our face recognition engine runs
on Windows. It uses a Haar Cascade of classifiers to per-
form detection, and then uses the Eigenfaces method [38]
based on principal component analysis (PCA) to make an
identification from a database of known faces. The imple-

mentation is based on OpenCV [26] image processing and
computer vision routines.

Object Recognition (MOPED): Our prototype sup-
ports two different object recognition engines. They are
based on different computer vision algorithms, with different
performance and accuracy characteristics. The open source
MOPED engine runs on Linux, and makes use of multiple
cores. It extracts key visual elements (SIFT features [19])
from an image, matches them against a database, and finally
performs geometric computations to determine the pose of
the identified object. The database in our prototype is pop-
ulated with thousands of features extracted from more than
500 images of 13 different objects.

Object Recognition (STF): The other object recog-
nition engine in our prototype is based on machine learning,
using the semantic texton forest (STF) algorithm described
by Shotton et al [35]. For our prototype, the MSRC21 image
dataset mentioned in that work (with 21 classes of common
objects) was used as the training dataset. Our Python-based
implementation runs on Linux and is single-threaded.

OCR (Open Source): A critical assistance need for
users with visual impairments is a way to determine what
is written on signs in the environment. Optical character
recognition (OCR) on video frames captured by the Glass
camera is one way to accomplish this. Our prototype sup-
ports two different OCR engines. One of them is the open
source Tesseract-OCR package [10], running on Linux.

OCR (Commercial): The second OCR engine sup-
ported by our prototype is a Windows-based commercial
product: VeryPDF PDF to Text OCR Converter [39]. It
provides a command-line interface that allows it to be scripted
and readily connected to the rest of our system.

Neither OCR engine is ideal for our purposes. Since they
were both intended to operate on scans of printed docu-
ments, they do not handle well the wide range of perspec-
tive, orientation, and lighting variations found in camera
images. They are also not optimized for interactive perfor-
mance. However, they are still useful as proofs of concept
in our prototype.

Motion Classifier: To interpret motion in the sur-
roundings (such as someone is waving to a user or running
towards him), we have implemented a cognitive engine based
on the MoSIFT algorithm [41]. From pairs of consecutive
frames of video, it extracts features that incorporate as-
pects of appearance and movement. These are clustered to
produce histograms that characterize the scene. Classifying
the results across a small window of frames, the engine de-
tects if the video fragment contains one of a small number
of previously-trained motions, including waving, clapping,
squatting, and turning around.

Activity Inference: As discussed in Section 3.4, de-
termining user context is important. Our activity inference
engine is based on an algorithm described by Nirjon et al [23]
for head-mounted accelerometers. The code first determines
a coarse level of activity based on the standard deviation of
accelerometer values over a short window. It then uses clues
such as inclination to refine this into 5 classes: sit/stand,
two variants of lay down, walk, and run/jump.



Engine Source OS VCPU∗ Sensors
Face Recognition open source research code based on OpenCV [38] Windows 2 images
Object Detection (MOPED) based on published MOPED [21] code Linux (32-bit) 4 images
Object Detection (STF) reimplementation of STF [35] algorithm Linux 4 images
OCR (Open Source) open source tesseract-ocr [10] package Linux 2 images
OCR (Commercial) closed-source VeryPDF OCR product [39] Windows 2 images
Motion Classifier action detection based on research MoSIFT [41] code Linux 12 video
Activity Inference reimplementation of algorithm from [23] Linux 1 accelerometer
Augmented Reality research code from [37] Windows 2 images

∗ Number of virtual CPUs allocated to the cognitive engine at experiment

Figure 8: Summary of Implemented Cognitive Engines in Our Prototype

CPU RAM
Cloudlet Intel R© CoreTM i7-3770 32GB

3.4GHz, 4 cores, 8 threads

Amazon EC2 Intel R© Xeon R© E5-2680v2 15GB
Oregon 2.8GHz, 8 VCPUs

Laptop - Dell Intel R© CoreTM 2 Duo 4GB
Vostro 1520 P8600 2.4GHz, 2 cores

Netbook - Dell Intel R© AtomTM N550 1.5GHz 2GB
Latitude 2120 2 cores, 4 threads

Google Glass OMAP4430 ARMv7 773MB
Processor rev 3 (v7l)

Figure 9: Experiment Hardware Specifications

Augmented Reality: Our prototype supports a Windows-
based augmented reality engine that identifies buildings and
landmarks in images [37]. It extracts a set of feature descrip-
tors from the image, and matches them to a database that
is populated from 1005 labeled images of 200 buildings. The
implementation is multi-threaded, and makes significant use
of OpenCV libraries and Intel Performance Primitives (IPP)
libraries. Labeled images can be displayed on the Glass de-
vice, or their labels can be read to the user.

5.6 User Guidance VM
The Gabriel architecture envisions sophisticated user guid-

ance that interprets results from multiple cognitive engines,
and uses context to intelligently present informative assis-
tance to the user. As the focus of this work is on the ar-
chitecture and system performance of Gabriel, not cogni-
tive assistance algorithms, our prototype only incorporates
a rudimentary place holder for a full-fledged User Guidance
service. Our implementation integrates the outputs of the
cognitive engines into a single stream of text, which is then
converted to speech output on the Glass device. It filters
the text stream to remove annoying duplicate messages over
short intervals, but is not context-sensitive. The implemen-
tation of a complete User Guidance service will entail signif-
icant future research, and is beyond the scope of this paper.

6. EVALUATION
Gabriel is an extensible architecture that provides a plug-

in interface for the easy addition of new cognitive engines.
These cognitive engines are written by third parties, and are
of varying quality. In some cases, these engines are closed
source and we have no control except through a few exter-
nal parameters. Our evaluation in this paper focuses on the
intrinsic merits of the Gabriel architecture, rather than the
speed, accuracy or other attributes of the cognitive engines

or their synthesis into user assistance. Wherever possible,
we use real cognitive engines in our evaluation so that the
workloads they impose are realistic. In a few cases, we sup-
plement real cognitive engines with synthetic ones to study
a particular tradeoff in depth.

We quantify the merits of the Gabriel architecture by ask-
ing the following questions:

• How much overhead does the use of VMs impose? Is
the complexity of a full-fledged OpenStack cloud com-
puting infrastructure tolerable in the latency-sensitive
domain of cognitive assistance? (Section 6.2)

• Are cloudlets really necessary for cognitive assistance?
How much benefit do they provide over conventional
cloud infrastructure such as Amazon EC2? (Section 6.3)

• Is the implementation complexity of token-based flow
control (Section 5.4) necessary? (Section 6.4)

• How easy is it to scale out cognitive engines? Assuming
that they are written to exploit parallelism, how well
is Gabriel able to provide that parallelism through the
use of multiple VMs? (Section 6.5)

• Is Gabriel able to meet latency bounds even when
loaded with many cognitive engines processing at full
data rate? (Section 6.6)

• Does fallback through fidelity reduction really help in
preserving crisp user interaction? What is the tradeoff
between loss of fidelity and improvement in response
time and battery life? (Section 6.7)

We examine these questions below, in Sections 6.2 to 6.7,
after describing the aspects of our setup that are common
to all the experiments.

6.1 Experimental Setup
Hardware specifications for our experiments are shown in

Figure 9. Experiments using a cloudlet deploy Gabriel inside
VMs managed by OpenStack on Linux hosts. For any exper-
iment involving the cloud, we used Amazon EC2 c3.2xlarge
VM instances located in Oregon, US. For any experiments
involving fallback devices, we run the cognitive engines na-
tively with no virtualization on either a laptop or a netbook.
The netbook is comparable in power to a modern smart-
phone, but it has an x86 processor which means all of our
cognitive engines execute unmodified and results are directly
comparable with other experiments. The Google Glass de-
vice always connects to the cloudlet and cloud via a private
Wi-Fi Access Point (AP) which routes over the public uni-
versity network. For the fallback experiments, we create
Wi-Fi hotspots on the offload devices and let the Google
Glass directly connect to them.

For reproducibility we use a pre-recorded 360p video to
process with the cognitive engines. During experiments, we
capture frames from the Glass device, but replace them with
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Figure 10: Trace of CPU Frequency, Response Time Changes on Google Glass

percentile 1% 10% 50% 90% 99%
delay (ms) 1.8 2.3 3.4 5.1 6.4

The delay between receiving a sensor data and sending a result
using NULL engine.

Figure 11: Intrinsic Delay Introduced by Gabriel

frames from the pre-recorded video. This ensures that our
energy measurements are consistent and reproducible. We
measure the energy consumption of Google Glass using the
battery voltage and current reported by the OS2. We have
verified that this measurement is consistent with the battery
capacity specifications. For laptops and netbooks, we use a
WattsUp Pro .NET power meter [40] to measure the AC
power consumption with batteries removed.

While measuring latency, we noticed anomalous variance
during experiments. We found that to reduce discomfort as
a wearable device, Glass attempts to minimize heat gener-
ation by scaling CPU frequency. Unfortunately, this causes
latency to vary wildly as seen in Figure 10. The CPU op-
erates at 300, 600, 800, or 1008 MHz, but uses the higher
frequencies only for short bursts of time. Empirically, with
ambient room temperature around 70 degrees Fahrenheit,
Glass sustains 600 MHz for a few minutes at a time after,
which it drops to its lowest setting of 300 MHz. In Figure 10,
we let Glass capture images from its camera, send them over
Wi-Fi to a server, and report the time from capture to the
time of server acknowledgment back to the Glass. Whenever
the CPU frequency drops we observe a significant increase in
latency. To reduce thermal variability as a source of latency
variability in our experiments, we externally cool the Glass
device by wrapping it with an ice pack in every experiment,
allowing it to sustain 600 MHz indefinitely.

6.2 Gabriel Overhead
Gabriel uses VMs extensively so that there are few con-

straints on the operating systems and cognitive engines used.
To quantify the overhead of Gabriel, we measure the time
delay on a cloudlet between receiving sensor data from a
Glass device and sending back a result. To isolate perfor-
mance of the infrastructure, we use a NULL cognitive engine,
that simply sends a dummy result upon receiving any data.
The cognitive VM is run on a separate physical machine
from the Control and User Guidance VMs. Figure 11 sum-
marizes the time spent in Gabriel for 3000 request-response
pairs as measured on the physical machine hosting the Con-
trol VM. This represents the intrinsic overhead of Gabriel.
At 2–5 ms, it is surprisingly small, considering that it in-
cludes the overheads of the Control, Cognitive, and User

2In /sys/class/power_supply/bq27520-0/current_now
and /sys/class/power_supply/bq27520-0/voltage_now
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Figure 12: CDF of End-to-end Response Time at
Glass Device for the NULL Cognitive Engine

Guidance VM stacks, as well as the overhead of traversing
the cloudlet’s internal Ethernet network.

The end-to-end latency measures at the Glass device are
shown in Figure 12. These include processing time to cap-
ture images on Glass, time to send 6–67 KB images over the
Wi-Fi network, the Gabriel response times with the NULL
engine, and transmission of dummy results back over Wi-
Fi. We also compare against an ideal server – essentially
the NULL server running natively on the offload machine
(no VM or Gabriel). Here, Gabriel and the ideal achieve
33 and 29 ms median response times respectively, confirm-
ing an approximately 4 ms overhead for the flexible Gabriel
architecture. These end-to-end latencies represent the min-
imum achievable for offload of a trivial task. Real cognitive
computations will add to these values.

6.3 Need for Cloudlets
We compare offload on our cloudlet implementation to the

same services running in the cloud (Amazon EC2 Oregon
datacenter). Figure 13 shows the distribution of end-to-end
latencies as measured at the Glass device for face recogni-
tion, augmented reality, and both OCR engines. The results
show that we do indeed see a significant decrease in latencies
using cloudlets over clouds. The median improvement is be-
tween 80 ms and 200 ms depending on the cognitive engine.
Much of this difference can be attributed to the higher la-
tencies and transfer times to communicate with the distant
data center.

In addition, except for augmented reality, the CDFs are
quite heavy tailed. This indicates that the time to process
each data item can vary significantly, with a small fraction
of inputs requiring many times the median processing time.
This will make it difficult to achieve the desired tens of mil-
liseconds responses using these cognitive engines, and in-
dicates more effort on the algorithms and implementations
of the cognitive engines is warranted. Although this vari-



ation exists for both the cloud and cloudlet, the slopes of
the curves indicate that our cloudlet instances are actually
faster, despite the fact that we employ desktop-class ma-
chines for the cloudlet and use Amazon instances with the
highest clock rate and network speed available for the cloud.

Finally, the extra latency for cloud offload will also ad-
versely affect the energy consumed on the Glass device. As
reported by the MAUI work [5] and others, longer response
times for offload requests typically leads to longer total time
spent in the tail energy states of hardware components on
the mobile device. This leads to more total energy con-
sumed by the mobile device. Our results are consistent with
these observations. Figure 14 shows that the energy con-
sumed on the Glass device for four representative cognitive
operations is 30–40% lower with cloudlet offload than with
cloud offload. Clearly, offload to cloudlets can produce sig-
nificant latency and energy improvements over offloading to
the cloud.

6.4 Queuing Delay Mitigation
In order to evaluate the need for our application-level,

end-to-end flow-control mechanism for mitigating queuing,
we first consider a baseline case where no explicit flow con-
trol is done. Instead, we push data in an open-loop manner,
and rely on average processing throughput to be faster than
the ingress data rate to keep queuing in check. Unfortu-
nately, the processing times of cognitive engines are highly
variable and content-dependent. Measurements summarized
in Figure 15 show that computation times for face recogni-
tion and OCR (Open Source) can vary by 1 and 2 orders of
magnitude, respectively. An image that takes much longer
than average to process will cause queuing and an increase
in latency for subsequent ones. However, with our two-level
token bucket mechanism, explicit feedback controls the in-
put rate to avoid building up queues.

We compare the differences in queuing behavior with and
without our flow control mechanism using a synthetic cog-
nitive engine. To reflect high variability, the synthetic ap-
plication has a bimodal processing time distribution: 90%
of images take 20 ms, 10% take 200 ms each. Images are
assigned deterministically to the slow or fast category using
a content-based hash function. With this distribution, the
average processing time is 38 ms, and with an ingress inter-
val of 50 ms (20 fps), the system is underloaded on average.
However, as shown in Figure 16-(a), without application-
level flow control (labeled TCP), many frames exhibit much
higher latencies than expected due to queuing. In contrast,
the traces using our token-based flow control mechanism
with either 1 or 2 tokens reduce queuing and control la-
tency. There are still spikes due to the arrival of slow frames,
but these do not result in increased latency for subsequent
frames. We repeat the experiment with a real cognitive en-
gine, OCR (Open Source). Here, the mean processing time
is just under 1 second, so we use an offered load of 1 FPS.
The traces in Figure 16-(b) show similar results: latency can
increase significantly when explicit flow control is not used
(TCP), but latency remains under control with our token-
based flow control mechanism.

The tight control on latency comes at the cost of through-
put – the token based mechanism drops frames at the source
to limit the number of data items in flight though the system.
Figure 17 shows the number of frames that are dropped,
processed on time, and processed but late for the OCR ex-
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Figure 13: Cumulative distribution function (CDF)
of response times in ms

Application Cloudlet Cloud
(Joule/query) (Joule/query)

Face 0.48 0.82
AR 0.19 0.32

OCR(open) 2.01 3.09
OCR(comm) 1.77 2.41

Figure 14: Energy Consumption on Google Glass

Application 1% 10% 50% 90% 99%
OCR(open) 11ms 13ms 29ms 3760ms 7761ms

Face 21ms 33ms 49ms 499ms 555ms

Figure 15: High Variability in Response Time
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Frame for OCR (500ms for on-time response)

periment. Here, we use a threshold of 0.5 s as the “on-time”
latency limit. The token-based mechanism (with tokens set
to 1) drops a substantial number of frames at the source,
but the majority of processed frames exhibit reasonable la-
tency. Increasing tokens (and number of frames in flight) to
2 reduces the dropped frames slightly, but results in more
late responses. Finally, the baseline case without our flow-
control mechanism attempts to process all frames, but the
vast majority are processed late. The only dropped frames
are due to the output queues filling and blocking the ap-
plication, after the costs of transmitting the frames from
the Glass front-end have been incurred. In contrast, the to-
ken scheme drops frames in the Glass device before they are
transmitted over Wi-Fi. These results show that our token-
based flow control mechanism is effective and necessary for
low latency as well as saving energy.

6.5 Scale-Out of Cognitive Engines
We use the Motion Classifier cognitive engine (Section 5.5)

to explore how well Gabriel supports parallelization across
multiple VMs. We modified this application to use a master-
slave scale-out structure. Feature extraction and classifi-
cation are both done in parallel on slaves, and pipelined
for higher throughput. Feature extraction is parallelized by
splitting every image into tiles, and having each slave extract
features from a different tile. Classification is parallelized by
having each slave receive the full feature vector, but only do-
ing an SVM classification for a subset of classes. The master
and each slave are mapped to different VMs. The master re-
ceives sensor data from the control VM, distributes it to the

Each family of CDFs shows five experimental runs with the
same number of slaves. The tight clustering within each fam-
ily shows that the observed improvement in latency across
families is significant: i.e., increasing the number of slave
VMs does indeed reduce latency.

Figure 18: Latency Reduction by VM Scale-Out

slaves, gathers and merges their results, and returns the final
result back to the control VM.

Since the final classification is done based on a window
of frames, we define the latency of this offload engine as the
time between when the last frame in the window is captured,
and when the classification result is returned. Figure 18
shows how latency drops as we use more slave VMs. The
90th percentile latency decreases from about 390 ms with
one slave, to about 190 ms with four slaves. Throughput
also improves. Using one, two, and four slave VMs, we get
frame rates of 9.8 fps, 15.9 fps, and 19.0 fps.

6.6 Full System Performance
Thus far we have presented experimental results examin-

ing an individual tradeoff or technique employed by Gabriel
to bound latency. In this section we investigate the perfor-
mance of the entire system with the cognitive engines exe-
cuting together. We use a different pre-recorded video for
this experiment which includes footage recognizable by the
cognitive engines such as signs with text for OCR, a Coke
can for object recognition, human faces for face recognition,
and waving for motion recognition.

Figure 19 shows the performance of each offloading en-
gine during this full system benchmark. Frame rate per sec-
ond (FPS) and response time is measured at the Glass. Be-
cause each cognitive engine’s compute time varies drastically



Engine FPS Response time (ms) CPU
10% 50% 90% load(%)

Face 4.4 389 659 929 93.4
MOPED 1.6 962 1207 1647 50.9
STF 0.4 4371 4609 5055 24.9
OCR(Open) 14.4 41 87 147 24.1
OCR(Comm) 2.3 435 522 653 95.8
Motion 14 152 199 260 20.1
AR 14.1 72 126 192 83.8

Figure 19: FPS and Latency of Cognitive Engines

based on content, this experiment is not comparable to the
previous microbenchmarks. But, the results reflect that the
cognitive engines operate independently within their VMs.
Most importantly, the overall system is not limited to the
slowest cognitive engine. The cognitive engines that can
process frames quickly operate at higher frame rates than
the slower cognitive engines, which is precisely what Gabriel
promises. In addition, the quickest cognitive engines main-
tain end-to-end latency of tens of milliseconds.

While we evaluated our system with a single Glass user in
this experiment, we provide a mechanism to support mul-
tiple users. Since the first-person images are highly per-
sonal data, the system isolates each user from others using
VLANs. We create a VLAN per user. Thus, a group of
cognitive VMs are dedicated to a single user without be-
ing shared. This approach cleanly isolates each user, but
the number of VMs is proportional to the number of users.
Therefore, it is important to assign appropriate amounts of
hardware resources to each cognitive engine. In our experi-
ments, the CPU usage of each cognitive engine ranges from
20.1% to 95.8% as in Figure 19. Many of the low CPU
utilizations are due to limited parallel sections in the cog-
nitive engine implementations, thus under-utilizing some of
the cores. For example, MOPED uses four cores in some sec-
tions, but only one or two for the remainder, for an average
of 50% utilization. This implies one may be able to sta-
tistically multiplex multiple cognitive engines on the same
physical cores, but this will have some impact on latency.

We also consider the overhead of provisioning a cloudlet
for the first time. Unlike the cloud, where all necessary VM
images can be assumed to be present, a new cloudlet may
need to be provisioned dynamically. We can use VM syn-
thesis [13] to rapidly provision a cloudlet from the cloud.
Our measurements show that it takes around 10 seconds to
provision and launch the Control and User Guidance VMs
from Amazon EC2 Oregon to our cloudlet on the CMU cam-
pus. The provisioning time for a cognitive VM ranges from
10 seconds to 33 seconds depending on VM size. In other
words, just 10 seconds after associating with a new cloudlet,
a Glass user can start transmitting sensor data to Gabriel.
The cloudlet’s cognitive engines will start providing answers
one by one as they are provisioned and instantiated. It is
important to note that provisioning is a one-time operation.
Persistent caching of VM images on a cloudlet ensures that
re-provisioning is rarely needed.

6.7 Impact of Reducing Fidelity
To study the effect of reducing fidelity, we focus on the

most heavyweight cognitive engine in our suite. The re-
sponse times in Figure 19 indicate that STF object recogni-
tion (described in Section 5.5) is very slow even on a cloudlet.
On a fallback device, the performance would be even worse.

Response Glass Glass Fallback
Time energy power device

per power
frame

Cloudlet
1080p 12.9 (1.2) s 23 J 1.8 W NA

Laptop
1080p 27.3 (1.7) s 55 J 2.0 W 31.6 W
720p 12.2 (0.4) s 25 J 2.0 W 31.7 W
480p 6.3 (0.6) s 13 J 2.0 W 31.4 W
360p 4.3 (0.8) s 9 J 2.1 W 31.3 W

Netbook
480p 32.9 (1.0) s 59 J 1.8 W 14.3 W
360p 20.5 (0.4) s 41 J 2.0 W 14.4 W

Each experiment was run for about 20 minutes to get at least
36 frames processed by STF. Numbers in parentheses are stan-
dard deviations of response times across frames. These mea-
surements used token setting 1 to get the best response time
possible. The monitor on the fallback device was turned off
to save energy.

Figure 20: Energy & Response Time vs. Fidelity

For object recognition, the resolution of individual video
frames is a natural parameter of fidelity. The highest resolu-
tion supported by a Glass device is 1080p. Lower resolutions
are 720p, 480p and 360p. When resolution is lowered, the
volume of data transmitted over Wi-Fi is reduced. This low-
ers transmission time, as well as the energy used for trans-
mission. Lower resolution also reduces the processing time
per frame on a fallback offload device.

Figure 20 shows the measured response time and energy
usage on the Glass device and on the offload device, as fi-
delity is reduced. The response time (12.9 s) and Glass
energy per frame (23 J) at 1080p with cloudlet offload are
baseline values. At 1080p with laptop offload, these values
increase to roughly twice their baselines. At 720p with lap-
top offload, these values are comparable to their baselines.
At lower fidelities with laptop offload, these values are be-
low their baselines. The netbook is much too slow at 1080p
and 720p, so Figure 20 only shows values for 480p and 360p.
Even at these fidelities, response time and Glass energy per
frame are both much higher than baseline.

The fourth and fifth columns of Figure 20 show that power
consumption on the Glass device and the fallback device
are quite stable, regardless of fidelity. This is because the
higher frame rate at lower fidelity compensates for the lower
energy per frame. At these power draws, a rough estimate
of battery life using data sheets gives the following values: 1
hour for Glass device, 1.5 hours for laptop, and 2 hours for
netbook. These are long enough to cover Internet coverage
gaps in the daily life of a typical user.

Although reducing fidelity hurts the accuracy of object
recognition, the relationship is not linear. In other words,
relative to the improvement in response time and energy
usage, the loss of accuracy due to fidelity reduction is mod-
est. This is illustrated by Figure 21, which shows results
based on the processing of 3583 video frames from 12 differ-
ent video segments. The STF object classifier is trained on
the 21 classes of objects in the MSRC21 data set described
by Shotton et al. [35]. For brevity, we only show results
for 5 representative object classes (“body,”“building,”“car,”
“chair,” and “dog”). The results for the other 16 classes fol-
lows this general pattern. We treat the classifier output at



body building car chair dog
1080p 2408 875 122 22 1004
720p

False neg. 56 5 4 0 39
False pos. 19 137 52 1 14

480p
False neg. 124 19 11 2 83
False pos. 24 219 136 2 25

360p
False neg. 223 39 14 3 122
False pos. 23 273 176 5 35

These numbers indicate the quantity of objects in each class
detected at different resolutions of the test data set. For each
class, the number detected at 1080p is ground truth.

Figure 21: Fidelity versus Accuracy

1080p to be ground truth. At this resolution, there are 2408
instances of “body,” 875 instances of “building” and so on.

As fidelity is reduced, classifier performance suffers both
through false negatives (i.e., objects that are missed) and
through false positives (i.e., detected objects that don’t re-
ally exist). Figure 21 shows that there are relatively few false
negatives. Even in the worst case (for “chair” at 360p), only
3 out of 22 objects (i.e., 13.6%) are missed. The picture is
murkier with respect to false positives. The “building” and
“car” classes show a high incidence of false positives as fi-
delity is reduced. However, the “body,” “chair,” and “dog”
classes only show a modest incidence of false positives as
fidelity is reduced. For use cases where false negatives are
more harmful than false positives, Figure 21 suggests that
the wins in Figure 20 come at an acceptable cost.

7. FUTURE WORK AND CONCLUSION
Sustained progress in foundational technologies has brought

the decade-long dream of mobile, real-time cognitive assis-
tance via “magic glasses” much closer to reality. The conver-
gence of mobile and cloud computing, the increasing sophis-
tication and variety of cognitive engines, and the widespread
availability of wearable hardware are all coming together at
a fortuitous moment in time. The work presented here is
an initial effort towards understanding this domain in depth
and identifying areas where improvements are most critical.

Most urgently, our results show that significant speed im-
provements are needed in virtually all cognitive engines. The
measurements reported in Section 6 indicate typical speeds
of a few hundred milliseconds per operation, rather than the
desired target of a few tens of milliseconds. In a few cases
such as STF object recognition, the speed improvement has
to be even larger. Exploiting cloudlet parallelism can help,
as shown by the results of Section 6.5. Restructuring the
internals of cognitive engines to exploit parallelism and to
make them more efficient is a crucial area of future effort.

Our results also show that significant improvements are
needed in wearable hardware. The Google Glass devices
used in this paper have many of the right attributes in terms
of weight, size, and functionality. Their computing power is
adequate when combined with cloudlet offloading, although
their thermal sensitivity (discussed in Section 6.1) limits
their usefulness. However, their battery life of less than
two hours on Gabriel workloads is unacceptably short for
real-world deployment as assistive devices. A factor of four
improvement in battery life on cognitive workloads, without

compromising other attributes, would be highly desirable.
Even longer battery life would, of course, be welcome.

Our results reinforce the need for cloudlet infrastructure
to attain the low end-to-end latencies that are essential for
real-time cognitive assistance. Although cloudlet infrastruc-
ture is not yet commercially available, there have been early
efforts in this direction [1, 25]. Identifying business models
for cloudlet deployments and then catalyzing such deploy-
ments will be important for success in this domain. Our
measurements suggest that cloudlets have to be substantial
computational engines, involving many multi-core proces-
sors with large amounts of memory each. They essentially
have to be server-class hardware, stationed at the edges of
the Internet.

Ultimately, real progress will come from experimental de-
ployments involving users who are genuinely in need of cog-
nitive assistance. Only live use will reveal HCI, usability,
robustness and scalability issues that will need to be ad-
dressed for a full solution. The Gabriel prototype represents
a humble first step, providing an open-source foundation for
exploring this exciting new domain.
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